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Abstract

n-best parse reranking is an important

technique for improving the accuracy of

statistical parsers. Reranking is not con-

strained by the dynamic programming re-

quired for tractable parsing, so arbitrary

features of each parse may be considered.

We adapt the reranking features and

methodology used by Charniak and John-

son (2005) for the C&C Combinatory Cat-

egorial Grammar parser, and develop new

features based on the richer formalism.

The reranker achieves a labeled depen-

dency F-score of 87.59%, which is a sig-

nificant improvement over prior results.

1 Introduction

Accurate syntactic parsing has proven to be criti-

cal for many tasks in natural language processing

(NLP), including semantic role labeling (Gildea

and Jurafsky, 2002), question answering (Echihabi

and Marcu, 2003), and machine translation (De-

Neefe and Knight, 2009). Improved parser accu-

racy benefits many downstream tasks in the field.

One method of improving parsing accuracy is

reranking – the process of reordering the top n
analyses as determined by a base parser (Collins,

2000). The statistical models used in phrase-

structure and dependency parsers rely on dynamic

programming algorithms that restrict possible fea-

tures to a local context. This is necessary for effi-

cient decoding of the potential parse forest, ensur-

ing tractability at the cost of excluding any non-

local features from consideration. Reranking op-

erates over complete trees that are the most prob-

able derivations under the dynamic programming

model, allowing arbitrary complex features of the

parse to be incorporated without sacrificing effi-

ciency. Poor local decisions made by parsers are

easier to model and capture in the reranking phase.

Collins (2000) reports a 1.55% accuracy im-

provement with reranking for the Collins parser,

and Charniak and Johnson (2005) reports a 1.3%

improvement for a reranked Charniak parser. An

open question is how well reranking applies to

parsers of different design to the Charniak and

Collins parsers. An attempt to port the Char-

niak and Johnson reranker for the Berkeley parser

(Petrov et al., 2006) produced only minimal ac-

curacy improvements (Johnson and Ural, 2010),

suggesting that careful feature engineering is nec-

essary for good performance.

In this paper we describe the implementation

of a discriminative maximum entropy reranker for

the C&C parser (Clark and Curran, 2007), a state-

of-the-art system based on Combinatory Catego-

rial Grammar (CCG). We reimplement the features

described in Charniak and Johnson (2005) to suit

the CCG parser and replicate the Charniak reranker

setup. Our experiments show that the PCFG-

style features are less effective at reranking CCG

than Penn Treebank-style trees. We hypothesise

that the binary-branching structure of CCG is the

cause, as CCG trees are deeper and create differ-

ent constituent structures compared to Penn Tree-

bank trees. To address this, we develop a number

of new features to take advantage of the more de-

tailed formalism and the evaluation over recovered

dependencies. We also experiment with regression

and classification approaches, variations in feature

pruning, and differing numbers of n-best parses

for the reranker to consider.

The reranker achieves a best labeled depen-

dency F-score of 87.13% on Section 00 of CCG-

bank and 87.59% on Section 23. The performance

gains are statistically significant, but small in real

terms, indicating that crafting reranking features is

not a trivial process. However, the continued im-

provements in parsing accuracy will benefit down-

stream applications utilising the parser through

more accurate syntactic analysis.
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2 Parser Reranking

Reranking has been successfully applied to de-

pendency parsing (Sangati et al., 2009), machine

translation (Shen et al., 2004), and natural lan-

guage generation with CCG (White and Rajkumar,

2009). Collins (2000) describes reranking for the

Collins (Model 2) parser (Collins, 1999). 36,000

sentences from Sections 02-21 of the Penn Tree-

bank WSJ data are parsed with a modified ver-

sion of the base parser, producing an average of

27 parses per sentence. Features are extracted

from the parses to create reranker training data,

including lexical heads and the distances between

them, context-free rules in the tree, n-grams and

their ancestors, and parent-grandparent relation-

ships. Collins reports a final PARSEVAL F-score of

89.75% using a boosting-based reranker, a 1.55%

improvement compared to the baseline parser.

The potential benefits from reranking are de-

pendent on the quality of the candidate n-best

parses. Huang and Chiang (2005) describe effi-

cient and accurate algorithms for this task based

on a directed hypergraph analysis framework

(Klein and Manning, 2001). By improving the

quality of the candidate parses, Huang and Chiang

demonstrate how oracle reranking scores (using a

perfect reranker that always choses the best parse

from an n-best list) can be dramatically improved

compared to the parses used in Collins (2000).

Charniak and Johnson (2005) describe discrimi-

native reranking for the Charniak parser. A coarse-

to-fine parsing approach allows high-quality n-

best parses to be tractably computed while retain-

ing dynamic programming in the parser. When run

in 50-best mode the Charniak n-best parser has an

oracle F-score of 96.8% in the standard PARSE-

VAL metric – much higher than the 89.7% parser

baseline. The reranker produces a final F-score of

91.0% in 50-best mode. This is an improvement of

1.3% over the baseline model. Self-training over

the reranked parses further improves performance

to 92.1% F-score, which remains the state-of-the-

art (McClosky et al., 2006). Self-training provides

the additional benefit of improving the Charniak

parser’s performance on out-of-domain data – a

known weakness of supervised parsing.

More recently, the Charniak reranking system

has been adapted for the Berkeley parser (Petrov

et al., 2006). Unlike the Collins and Charniak

parsers, which are broadly similar and heavily

based on lexicalised models, the Berkeley parser

Jack baked a cake with raisins

N (S\NP)/NP NP/N N (NP\NP)/NP N
>

NP NP NP
>

NP\NP
<

NP
>

S\NP
<

S

Figure 1: A simple CCG derivation.

uses a split-merge technique to acquire a much

smaller, unlexicalised grammar from its training

data. Johnson and Ural (2010) report that rerank-

ing leads to negligible performance improvements

for the Berkeley parser, and acknowledge that the

reranker’s feature set, adapted from Charniak and

Johnson (2005), may be implicitly tailored to the

Charniak parser over the Berkeley parser. In par-

ticular, the feature pruning process for rerank-

ing was conducted over output from the Charniak

parser, which may have prevented useful features

for the Berkeley parser from being chosen.

3 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG, Steed-

man (2000)) is a lexicalised grammar formalism

based on combinatory logic. The grammar is di-

rectly encoded in the lexicon in the form of cate-

gories that govern the syntactic behaviour of each

word. A small number of generic rules combine

categories together to form a spanning analysis.

Categories may be atomic or complex. Atomic

categories represent words and constituents that

are syntactically complete, such as nouns (N ),

noun phrases (NP ), prepositional phrases (PP ),

and sentences (S ). Complex categories are binary

structures of the form X /Y or X \Y , and repre-

sent structures which combine with an argument

of category Y to produce a result of category X .

The forward and backward slashes indicate that Y

is expected to the right and left respectively.

Complex categories can be thought of as func-

tors that require particular arguments to produce

a grammatical construction. Subcategorization

information is encoded using nested categories.

For example, transitive verbs have the category

(S\NP)/NP , which indicates that one object NP

is expected to the right to form a verb phrase

S\NP , which in turn expects one subject NP to

the left to form a sentence.
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In addition to forward and backward applica-

tion, CCG has a number of other binary combi-

nators based on function composition. There are

also unary type-changing combinators that take a

single category and transform it into another cat-

egory. Figure 1 gives a simple CCG derivation,

showing how categories are successively com-

bined together to yield an analysis.

4 The C&C parser

The C&C parser (Clark and Curran, 2007) is a fast,

highly accurate parser based on the CCG formal-

ism. The parser is used in question answering sys-

tems (Bos et al., 2007), computational semantics

tools (Bos et al., 2004), and has been shown to per-

form well in recovering unbounded dependencies

(Rimell et al., 2009).

The parser divides the parsing process into two

main phases: supertagging and parsing. First,

the supertagger assigns a small set of initial cat-

egories to each word in the sentence. Then, the

parser attempts to find a spanning analysis using

the proposed categories using the modified CKY

algorithm described in Steedman (2000). If the

parser cannot find an analysis (i.e. there is no se-

quence of combinators that can combine the pro-

posed categories) the supertagger is run again at a

higher ambiguity level, giving each word a larger

set of possible categories, and the process is re-

peated. The supertagging phase dramatically re-

duces the number of derivations for the parser to

consider, making the system highly efficient.

An n-best version of the C&C parser has re-

cently been developed (Brennan, 2008), incorpo-

rating the algorithms described in Huang and Chi-

ang (2005). The n-best parser is almost as efficient

as the baseline 1-best version, and we use it as the

basis for all experiments presented in this paper.

CCGbank is the standard corpus for English

parsing with CCG. It is a transformation of the

Penn Treebank WSJ data into CCG derivations

and dependencies (Hockenmaier and Steedman,

2007). Sections 02-21 are the standard training

data for the C&C parser, with Section 00 used for

development and Section 23 for evaluation. The

supertagger requires part-of-speech information

for each word as part of its feature set, so a POS

tagger is also included with the C&C parser. Both

the supertagger and the POS tagger are trained over

tags extracted from Sections 02-21 of CCGbank.

5 Methodology

We frame the reranking task for CCG parsing as

follows: given an n-best list of parses, ranked by

the parser, choose the parse that is as close as

possible to the gold standard. We use the stan-

dard CCG labeled dependency metric as described

in Hockenmaier (2003) to define closeness to the

gold standard, allowing us to explore both classi-

fication and regression as frameworks for the task.

In classification, the closest sentence(s) to the gold

standard with respect to F-score are labeled as pos-

itive, while all other sentences are labeled as neg-

ative. If there are multiple parses with the highest

F-score, they are all labeled as positive. In regres-

sion, the F-score of each parse is used as the tar-

get value. Both classification and regression ap-

proaches were implemented using MEGAM
1.

n-best lists of parses were generated using the

n-best C&C parser using Algorithm 3 of Huang

and Chiang (2005). We used the normal-form

model for the C&C parser as described in Clark

and Curran (2007) for all experiments in this pa-

per. Reranker training data was created using n-

best parses of each sentence in Sections 02-21 of

CCGbank. As this is also the parser’s training

data, care must be taken to avoid generating train-

ing data where the parser’s confidence level is dif-

ferent to that at run-time (caused by parsing the

training data). We constructed ten folds of Sec-

tions 02-21, training the POS tagger, supertagger,

and parser on nine of the folds and producing n-

best parses over the remaining fold.

Features were generated over the n-best parses

of the folded training data and the appropriate la-

bel assigned based on the F-score. This data was

used to train the reranker. Similarly, Section 24 of

CCGbank was parsed using a model trained over

Sections 02-21 for use as tuning data. At run-time,

features were generated over the n-best parses of

the test data, and the most probable parse (clas-

sification) or the parse with the highest predicted

F-score (regression) was returned.

We experimented with values of 10 and 50 for

n to balance between the potential accuracy im-

provement and the efficiency of the reranker. n
was kept constant between the training data and

the final test data (i.e. a reranker trained on 50-

best parses was then tested over 50-best parses).

Following Charniak and Johnson (2005) we im-

plemented feature pruning for the reranker train-

1http://www.umiacs.umd.edu/˜hal/megam
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ing data as follows. For each sentence, define a

feature as being pseudo-constant if it does not dif-

fer in value over all the parses for that sentence.

We keep all features that are non pseudo-constant

in at least t sentences in the training data. We ex-

perimented with values of 0, 2, and 5 for t to in-

vestigate the effect of feature pruning.

6 Reranking Features

The features described in this section are calcu-

lated over CCG derivation trees produced by the

C&C parser. We began by implementing the fea-

tures described by Charniak and Johnson (2005),

before developing features specifically for CCG

derivations. We also implemented the CCG pars-

ing features described by Clark and Curran (2007),

so that our reranking model would have access to

the information used by the parser. These features

include various combinations of word-category,

word-POS, CCG rule, distance, and dependency in-

formation. Finally, the log score and rank assigned

to each derivation by the parser were encoded as

core features for the reranker.

CCG derivation trees have some important struc-

tural differences from the trees that the Charniak

and Johnson features were designed for. The most

important difference is that CCG trees are at most

binary branching2. As the longest non-terminal in

the Penn Treebank has 51 children, features de-

signed to generalise long production rules are use-

ful in the Charniak and Johnson reranker but are

less relevant to CCG trees.

Another important difference is that CCG pro-

duction rules are constrained by the combinatory

rules, whereas Penn Treebank productions com-

bine unrelated atomic symbols. For instance, a

Penn Treebank production NP→ NP PP would be

translated into CCG as NP→ NP NP\NP . Much

of the information in the production is already

present in the structure of the NP\NP category.

We speculate that this will make the features that

capture the vertical context of a production rule

less useful for CCG.

Finally, each ccg tree corresponds to exactly one

dependency analysis, and this is produced as out-

put by the C&C parser. This gives the reranker

access to the full dependency analysis of each

sentence, making the dependency-approximation

2Steedman (2000) describes a ternary conjunction rule,
but this is broken into two binary productions in CCGbank,
using the marker [conj ].

heuristics used by Charniak and Johnson (2005)

unnecessary for our purposes.

The features adapted from Charniak and John-

son (2005) are described in Sections 6.1 and 6.2

below. The novel CCG features we develop are

described in Section 6.3. Most features were im-

plemented as simple boolean indicator functions.

Maximum entropy modelling exponentiates fea-

ture values, so real-valued features are more in-

fluential than boolean features. We mitigated this

effect by taking the log of real-valued features.

6.1 Tree Topology Features

These features attempt to describe the overall

shape of the parse tree, to capture the fact that

English generally favours right-branching parse

trees, with phonologically heavy constituents gen-

erally occurring in sentence-final position. Tree

topology can also be useful in capturing the bal-

ance found in coordination attachment. These

guidelines distinguish the correct parse tree in Fig-

ure 2a from the incorrect parse tree in Figure 2b –

the incorrect tree is more left-branching than the

correct tree, with a shallower depth of balance in

the coordination.

CoPar: records coordination parallelism at vari-

ous depths. Indicates whether both sides of a co-

ordination are identical in structure and category

labels at depths of 1 to 4 from the coordinator.

CoLenPar: indicates the difference in size be-

tween two halves of a conjunction (where size

is the number of nodes in the yield) as well as

whether the latter half is the final element.

Heavy: encodes the category and size of the sub-

tree rooted at each non-terminal, whether the non-

terminal is at the end of the sentence, and whether

it is followed by punctuation. This crudely cap-

tures the tendency for larger constituents to lie fur-

ther to the right in a tree.

RightBranch: encodes the number of non-

terminals on the longest path from the root of the

tree to the right-most non-punctuation node in the

tree, and the number of non-terminals in the tree

that are not on this path.

SubjVerbAgr: captures the conjoined POS tags of

the subject noun and verb in a sentence to distin-

guish cases where the pluralisation does not agree.

The subject is assumed to be the final NP before

the verb phrase (S\NP ) in a sentence.
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S

NP

It

VP

VP
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VP\VP

VP\VP

VP\VP

2 %

VP\VP

this week

VP\VP [conj ]
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and

VP\VP

VP\VP

9 %

VP\VP

this year

(a) The correct parse.

S

NP

It

VP

VP

VP

VP

rose

VP\VP

2 %

VP\VP

NP

NP/N

this

N

N

week

N [conj ]
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and

N

9 %

VP\VP

this year

(b) Parse featuring a conjunction error.

Figure 2: Two CCG derivations for the sentence, It rose 2% this week and 9% this year.

6.2 Local Context Features

These features, adapted from Charniak and John-

son (2005), attempt to represent various fragments

of the tree as well as incorporate layers of vertical

and horizontal context that are difficult to encode

in the parser model.

Edge: captures the words and POS tags immedi-

ately preceding and following the subtree rooted

at each non-terminal in the tree. This crudely cap-

tures poor attachment decisions in local trees.

Heads: represents pairs of constituent heads as in-

dicated by the parser at various levels in the tree.

Heads are encoded as lexical items and POS tags.

HeadTree: records the entire tree fragment (in a

bracketed string format) projected upwards from

the head word of the sentence.

Neighbours: encodes the category of each non-

terminal, its binned size, and the POS tags of the

ℓ1 preceding words and the ℓ2 following words,

where ℓ1 = 1 or 2 and ℓ2 = 1. Binned size is the

number of words in the yield of the non-terminal,

bucketed into 0, 1, 2, 4, or 5+.

NGramTree: records tree fragments rooted at the

lowest common ancestor node of ℓ = 2 or 3 con-

tiguous terminals in the tree. This represents the

subtree encompassing each sequence of ℓ words

in the sentence.

Rule: captures the equivalent CCG rule application

represented at each non-terminal node; equivalent

to a context-free production rule.

SynSemHeads: yield pairs of semantic heads (e.g.

the rightmost noun in a noun phrase) and func-

tional heads (e.g. the determiner in a noun phrase)

at each non-terminal in the tree. Heads are en-

coded as lexical items and POS tags.

Word: yields each word in a sentence along with

the categories of ℓ = 2 or 3 of its immediate an-

cestor nodes in the tree.

WProj: for each terminal in the tree, encode the

word combined with the category of its maximal

projection parent, which is the first node found by

climbing the tree until the child node is no longer

the head of its parent.

6.3 CCG Features

We devised a number of new features for CCG

aimed at uncovering various combinator se-

quences or combinations that may indicate an

overly complicated or undesirable derivation. Ad-

ditionally, these features attempt to encode more

information about the dependencies licensed by

the derivation as it is these dependencies which

will be evaluated.

Balance: encodes the overall balance of the tree in

terms of the ratio of leaves and the ratio of nodes

in the left and right subtrees from the root. This

feature reflects the decision to make all nominal

compounds in CCGbank right branching (Hock-
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enmaier and Steedman, 2007).

CoHeads: records the heads of both halves of a

coordination as indicated by the parser, along with

the depth at which the head is found. This attempts

to encode the conjunction dependencies in the tree

as incorrect conjunction dependencies propagate

through to other dependencies in the tree. Heads

are encoded as lexical items and POS tags.

LexDep: CCG dependencies can be partially cap-

tured via the children of non-terminals in the tree.

This feature is active for non-terminals with two

children and encodes the heads of the children in

terms of lexical items, POS tags, categories, and

depth from the non-terminal. Dependencies in-

volving punctuation are ignored as they are not as-

sessed in the evaluation.

NumDeps: distinguishes between parses based on

the log number of dependencies that they yield ig-

noring punctuation. Dependencies are located us-

ing the same heuristic as the LexDep feature.

TypeRaising: indicates the presence of unary

type-raising in the tree. While type-raising is nec-

essary to analyse some constructions in CCG, it has

tightly restricted in the parser due to its power, and

is expected to appear only rarely.

UnaryRule, BiUnaryRule: indicates the unary

rules present in the tree and the bigram combina-

tions of these rules. The unary rules do not include

type-raising and are non-standard in CCG; they

were added by Hockenmaier and Steedman (2007)

to CCGbank for constructions such as clausal ad-

juncts, which are poorly handled by the formalism.

C&C Features: Finally, we also incorporate the

dependency and normal-form features used by

the C&C parser as described in Clark and Cur-

ran (2007). These features encode various com-

binations of word-category, word-POS, root-word,

CCG rule, distance, and dependency information.

7 Evaluation Measures

We follow the CCG dependency evaluation

methodology established by Hockenmaier (2003),

using the EVALUATE scorer distributed with the

C&C parser. It evaluates a CCG parse as a set of la-

beled dependencies consisting of the head, its lex-

ical category, the child, and the argument slot that

it fills. A dependency is considered correct only if

all four elements match the gold standard.

LP LR LF AF

Baseline 87.19 86.32 86.75 84.80

Oracle 10 91.98 90.89 91.43 89.47

Oracle 50 93.43 92.26 92.84 90.96

Table 1: Baseline and oracle n-best parser perfor-

mance over Section 00 of CCGbank.

Statistical significance was calculated using the

test described in Chinchor (1992), which measures

the probability that the two sets of responses are

drawn from the same distribution. A score below

0.05 is considered significant.

We report labeled precision (LP), labeled recall

(LR), and labeled F-score (LF) results over gold

standard POS tags and labeled F-score over auto-

matically assigned POS tags (AF).

8 Results

8.1 Oracle Performance

Reranking is dependent on high-quality parses

from the n-best parser. As seen in Table 1, the ora-

cle labeled dependency F-score of the n-best C&C

parser is 92.48% given a perfect reranker over 50-

best parses. This is a significant improvement over

the baseline result of 86.75% and provides a solid

basis for a reranker.

Our oracle score falls notably short of the 50-

best oracle of 96.8% reported by Charniak and

Johnson (2005), over a baseline of 89.7%. How-

ever, these numbers refer to the PARSEVAL score

for constituency parses, so they are not directly

comparable to our dependency recovery metric.

We present results in Tables 2 and 3 com-

paring the 1-best C&C parser using the normal-

form model (Clark and Curran, 2007), random-

ized baselines (choosing a parse at random from

the n-best list), and the reranking C&C parser in

labeled dependency recovery over Section 00 of

CCGbank. Our best result for 10-best rerank-

ing is an F-score of 87.13% with gold POS tags

and 85.22% with automatically assigned POS tags.

This is achieved using the regression setup and all

features without pruning. The best result for 50-

best reranking is F-scores of 87.08% and 85.23%

respectively, using the classification setup with all

features and a pruning value of 2. These two

results are both statistically significant improve-

ments over the baseline parser.

Randomly choosing a parse from the n-best list
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t LP LR LF AF

Baseline - 87.19 86.32 86.75 84.80

Random - 85.40 84.46 84.93 83.00

Class+CJ

0 87.21 86.06 86.63 84.81

2 87.16 85.98 86.57 84.82

5 87.12 85.95 86.53 84.74

Class+CCG

0 87.17 86.18 86.67 84.75

2 87.19 86.19 86.69 84.74

5 87.11 86.09 86.59 84.68

Class+ALL

0 87.32 86.32 86.82 84.85

2 87.29 86.29 86.78 84.82

5 87.23 86.25 86.74 84.79

Regress+CJ

0 86.96 85.99 86.47 84.58

2 86.75 85.76 86.26 84.34

5 86.69 85.72 86.20 84.30

Regress+CCG

0 87.27 86.41 86.83 85.08

2 87.05 86.12 86.58 84.70

5 86.96 86.08 86.52 84.73

Regress+ALL

0 87.60 86.67 87.13 85.22

2 87.42 86.47 86.94 85.00

5 87.41 86.50 86.95 84.96
.

Table 2: 10-best reranking performance on Sec-

tion 00 of CCGbank for various combinations of

features, pruning values t, and classification and

regression experiments. Bolded scores are the

highest for the feature set and approach.

t LP LR LF AF

Baseline - 87.19 86.32 86.75 84.80

Random - 83.90 82.58 83.24 81.50

Class+CJ

0 86.93 85.87 86.40 84.69

2 86.72 85.54 86.12 84.48

5 86.77 85.61 86.19 84.56

Class+CCG

0 87.17 86.10 86.63 84.62

2 87.14 86.07 86.60 84.66

5 87.29 86.17 86.72 84.66

Class+ALL

0 87.38 86.29 86.83 84.91

2 87.61 86.56 87.08 85.23

5 87.30 86.22 86.76 84.74

Regress+CJ

0 86.49 85.64 86.07 84.22

2 86.44 85.46 85.95 84.32

5 86.32 85.28 85.80 84.12

Regress+CCG

0 87.08 86.15 86.61 84.65

2 87.00 86.06 86.53 84.66

5 87.07 86.08 86.57 84.72

Regress+ALL

0 87.28 86.30 86.79 84.89

2 86.73 85.77 86.25 84.43

5 87.04 86.06 86.55 84.66

Table 3: 50-best reranking performance on Sec-

tion 00 of CCGbank for various combinations of

features, pruning values t, and classification and

regression experiments.

LP LR LF AF

Best 87.60 86.67 87.13 85.22

-CoPar 87.47 86.57 87.02 85.11

-CoLenPar 87.53 86.59 87.06 85.17

-Heavy 87.44 86.55 86.99 85.09

-RightBranch 87.59 86.67 87.13 85.17

-SubjVerbAgr 87.26 86.26 86.76 84.88

-Edges 87.11 86.22 86.67 84.87

-Heads 87.55 86.65 87.10 85.26

-HeadTree 87.61 86.64 87.12 85.22

-Neighbours 87.50 86.59 87.05 85.16

-NGramTree 87.51 86.55 87.03 85.08

-Rule 87.54 86.58 87.05 85.14

-SynSemHeads 87.42 86.47 86.94 85.07

-Word 87.44 86.51 86.97 85.11

-WProj 87.44 86.55 86.99 85.09

-Balance 87.44 86.53 86.98 85.17

-CoHeads 87.38 86.47 86.93 84.90

-LexDep 87.52 86.58 87.04 85.15

-NumDeps 87.40 86.54 86.97 85.04

-TypeRaising 87.41 86.48 86.95 85.05

-UnaryRule 87.58 86.68 87.13 85.27

-BiUnaryRule 87.55 86.64 87.09 85.20

-C&C 87.44 86.48 86.96 84.97

Table 4: Subtractive analysis on the top perform-

ing 10-best model on Section 00. Bold indicates a

statistically significant change from the baseline.

results in much poorer performance than the 1-best

baseline. All our experiments produced results

that were significantly higher than the randomized

result, indicating that our approaches were learn-

ing useful features from the training data. Even

though the oracle scores increase with n (as shown

in Table 1), the overall parse quality deteriorates.

Regression was generally more successful for

10-best reranking, while classification was better

for 50-best reranking. However, there were very

few cases where a statistically significant differ-

ence in performance was observed between re-

gression and classification approaches.

8.2 Features

We investigated the performance of three sets of

features: those adapted from Charniak and John-

son (2005) (CJ), our new features (CCG), and the

union of the two sets (ALL). The log score and

rank of each parse was included as core features

in every experiment. In general, more features im-

proved performance. The best results were pro-

duced using all of the possible features in the

reranker model. In terms of the top F-score for
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LP LR LF AF

Baseline 87.19 86.32 86.75 84.80

SubjVerbAgr 86.76 85.87 86.31 84.33

Edges 86.29 85.45 85.87 83.95

Both 86.30 85.49 85.89 83.95

Table 5: 10-best isolation experiments for the

SubjVerbAgr and Edges features on Section 00 us-

ing regression and no pruning.

LP LR LF AF

Baseline 87.75 86.98 87.36 85.07

Reranker 87.98 87.21 87.59 85.36

Table 6: Baseline and final reranker performance

over Section 23 of CCGbank with the normal-

form model.

each set of features, the CCG-specific features

were better than the Charniak and Johnson (2005)

features by a statistically significant margin. This

held in all experiments except one (10-best clas-

sification), indicating that features tailored to CCG

trees and dependency evaluation were more dis-

criminative between good and bad CCG parses.

This also implies that for reranking to improve

the accuracy of a parser, the features must target

that parser and the nature of its evaluation. Fea-

tures producing state-of-the-art performance for

the Charniak reranker had no positive impact on

CCG parsing in isolation.

We conducted subtractive feature analysis on

our best performing model (10-best regression

with all features and no pruning) to investigate

the contribution of individual features. Features

were individually removed and the reranker was

retrained and retested on Section 00. The removal

of the SubjVerbAgr and Edges features are statis-

tically significant, while the removal of any other

single feature results in a non-significant decrease

in F-score. We then performed an isolation ex-

periment, training and testing the reranker using

just the SubjVerbAgr and Edge features with the

log score and rank from the parser. Table 5 shows

that these features do significantly worse than the

baseline in isolation, indicating that it is the com-

bination of features together which produces the

improved performance.

8.3 Pruning

We found that increased feature pruning had a neg-

ative impact on parsing accuracy. None of our ex-

periments showed a significant improvement with

higher pruning values, as opposed to Charniak and

Johnson (2005) who found the count-based prun-

ing to be useful. The best performing systems

overall used pruning values of 0 or 2, implying

that the pruning strategy is ineffective with respect

to performance over such a varied set of features.

One area where pruning does help is in the train-

ing times for the reranker: some experiments are

nearly twice as fast with a pruning value t = 5 com-

pared to t = 0. However, as this cost must only be

paid once, the benefit of pruning with respect to

actual parsing time is negligible.

8.4 Final Results

Table 6 summarises the performance of our best

reranker model against the baseline normal-form

model on Section 23 of CCGbank. We achieve

statistical significant improvement in F-score over

the baseline. However, in real terms the change in

F-score is small, indicating that reranking may not

guarantee performance improvements even if it is

carefully targeted to the parser.

9 Conclusion

We have implemented a maximum entropy

reranker for the C&C CCG parser, building on the

methodology and features of Charniak and John-

son (2005) and extending the approach with new

features. We have found that performance im-

provements from reranking stem from targeting

the reranker features at the parser and its evalua-

tion: features tailored to CCG perform better than

PCFG-style features in isolation. Our best system

achieves an of 87.59%, which is a statistically sig-

nificant improvement over the baseline parser.

The reranker scales with the efficiency of cal-

culating features on parse trees. The features de-

scribed in this paper require time linear in the

number of nodes in the tree. However, the reranker

is currently implemented as an external post-

processing step. This leads to an order of magni-

tude speed decrease; future work will include in-

tegrating the reranker into the parser itself to miti-

gate this speed impact.

The improvement in accuracy that we achieve is

small in absolute terms, showing that reranking is

a considerably difficult task. However, continued
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improvements such as this one in parsing accuracy

will benefit the variety of downstream applications

that utilise parsing for practical NLP tasks.
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