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Abstract

Automatically judging sentences for their

grammaticality is potentially useful for

several purposes — evaluating language

technology systems, assessing language

competence of second or foreign lan-

guage learners, and so on. Previous work

has examined parser ‘byproducts’, in par-

ticular parse probabilities, to distinguish

grammatical sentences from ungrammat-

ical ones. The aim of the present paper

is to examine whether the primary out-

put of a parser, which we characterise via

CFG production rules embodied in a parse,

contains useful information for sentence

grammaticality classification; and also to

examine which feature selection metrics

are most useful in this task. Our re-

sults show that using gold standard pro-

duction rules alone can improve over us-

ing parse probabilities alone. Combin-

ing parser-produced production rules with

parse probabilities further produces an im-

provement of 1.6% on average in the over-

all classification accuracy.

1 Introduction

Automatically judging sentences for their gram-

maticality has been a long-standing research prob-

lem within the natural language processing com-

munity. The ability of distinguishing grammati-

cal sentences from ungrammatical ones has many

potential applications, which include evaluating

language technology systems such as natural lan-

guage generation (Mutton et al., 2007) and ma-

chine translation (Gamon et al., 2005), as well

as assessing language competence of second lan-

guage or foreign language learners (Brockett et al.,

2006; Gamon et al., 2008; Han et al., 2010).

Various approaches have been proposed in the

past to address this typical classification problem.

A number of these existing studies attempt to ex-

ploit some form of ‘parser byproduct’ as classifi-

cation features for machine learning: for instance,

(log) probability of a parse tree, number of par-

tial (incomplete) parse trees, parsing duration, and

such (Mutton et al., 2007; Sun et al., 2007; Fos-

ter et al., 2008; Wagner et al., 2009). The aim of

this paper is to examine whether the primary out-

put of a parser contains useful information for this

classification problem; we characterise this infor-

mation by the CFG production rules embodied in

a parse. The intuition is that particular production

rules might be strongly characteristic of ungram-

matical sentences, and that looking at individual

rules might provide clues that are aggregated out

in measures such as the parse tree probability.

We carry out experiments to test this intuition,

using the Penn treebank and an artificially cre-

ated ungrammatical version created by Foster et

al. (2008). This allows a large amount of data to

be used for classification, embodying a controlled

ungrammaticality that is suitable for preliminary

work in this direction; it is for similar reasons that

construction of erroneous corpora has become a

more prominent line of computational linguistic

research lately (Foster and Andersen, 2009; Han

et al., 2010; Dickinson, 2010).

The present study is carried out in two stages. In

the first stage, following Foster et al. (2008), we

induce three models from a probabilistic parser by

re-training it with a (presumably) grammatically

well-formed corpus, a grammatically ill-formed

corpus, and a mixed corpus consisting of both

grammatical and ungrammatical sentences. The

model which outperforms the others is then used

for all the subsequent parsing tasks. In the next

stage, we utilise the outputs of the parser from the

first stage and a parser trained on only grammati-

cal text for sentence grammaticality classification,

in which two classes of feature are to be examined

— parse probabilities based on the parser outputs
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and production rules based on both the gold stan-

dard and the parser outputs. A number of feature

selection metrics are explored to obtain a set of

discriminative parse rules for classifying English

sentences based on their grammaticality.

The remainder of this paper is structured as fol-

lows. We review some related work in Section 2.

In Section 3, we detail the experimental settings

and the feature selection metrics. Sections 4.1 and

4.2 then present the parsing results and the classi-

fication results, respectively; followed by discus-

sion in Section 5.

2 Related Work

In this section, we briefly review some of the re-

lated studies on judging sentence grammaticality.

We also discuss some of the recent work concern-

ing the construction of erroneous corpora for the

purpose of grammatical error detection.

2.1 Sentence Grammaticality Judgement

In some ways, the present study is an extension of

the work presented by Foster et al. (2008). Their

intention is to improve the robustness of a prob-

abilistic parser which might not be initially de-

signed to handle ungrammatical sentences. Re-

training on both grammatical and ungrammatical

sentences enabled a parser to parse ungrammati-

cal sentences at a relatively satisfactory level with-

out compromising its initial performance on gram-

matical sentences. To attain an optimal parsing

accuracy, the parser output of a sentence is cho-

sen according to the highest parse probability of

the most likely parse tree returned by the three in-

duced models of the Charniak and Johnson rerank-

ing parser (Charniak and Johnson, 2005) trained

across three different corpora — grammatical, un-

grammatical, and a combination of both. Their ex-

periments show that their parse probability-based

classifier which can be considered as an integra-

tion of two parsers (one trained on grammatical

data and the other trained on some ungrammati-

cal data) is able to parse ungrammatical sentences

better than the original parser trained exclusively

on a grammatical corpus. The grammatical corpus

used by Foster et al. (2008) is the Wall Street Jour-

nal (WSJ) treebank, and the ungrammatical ver-

sion is one that they generated (see Section 2.2).

In a related work (Wagner et al., 2009), a num-

ber of parser outputs are utilised for classifying

a sentence as to whether it is grammatical or un-

grammatical. In addition to the widely used part-

of-speech n-grams, they made use of two types

of parsers, each based on a different grammar

— the precision grammar parser (XLE parser)

and the probabilistic parser (Charniak and John-

son parser). Features extracted from the proba-

bilistic parser, which include the differences in log

probabilities of parse trees and the structural dif-

ferences between parse trees, are better discrim-

inants as compared to both the n-gram features

and the parser statistics outputs obtained from the

precision-grammar-based parser. The overall ac-

curacy achieved is within the range of 65-75% by

using the combination of all the feature sets.

A similar idea had been used by Mutton et al.

(2007), who discovered that parser outputs can be

used as metrics for assessing generated sentence

fluency. The underlying idea is that a poorer per-

formance of the parser on one sentence relative to

another might indicate that there is some degree of

ungrammaticality or disfluency in the former. Out-

puts from multiple parsers, such as log probability

of the most likely parse, number of partial parse

trees, and number of invalid parses were investi-

gated. The combination of multiple parser outputs

outperforms individual parser metrics.

Parse probability was also used by Sun et al.

(2007) for machine learning based classification.

There, the type of feature they term ‘labelled se-

quential patterns’ like non-contiguous n-grams,

proves more important for sentence grammatical-

ity classification with an accuracy rate of over

80%. To provide useful feedback to learners of

English as a Second Language (ESL), two English

learner corpora are used — Japanese and Chinese.

The techniques of phrase-based SMT have been

adapted for grammaticality judgement on ESL

sentences as well. Brockett et al. (2006) treat er-

ror correction as a translation task, and solve it by

using the noisy channel model. They made use of

the Chinese Learner Error Corpus as a template for

training data creation; but also needed large sets of

parallel corpora.

2.2 Erroneous Corpora Construction

Large-scale ungrammatical corpora are crucial for

research concerning grammaticality judgement, in

particular for classification training. Recently, a

number of pieces of corpus-based research have

been undertaken to collect authentic errors as well

as to generate synthetic errors for this purpose.
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The thesis work of Foster (2005) involved an

extensive analysis of grammar error types across a

20K word corpus consisting of newspaper articles,

emails, Internet forum postings, and academic pa-

pers. This led to the development of an ungram-

matical version of the WSJ treebank according to

a model derived from this analysis (Foster, 2007);

this also included a procedure for constructing

trees for the ungrammatical sentences. Ungram-

matical sentences are constructed by introducing

errors into the original (grammatical) WSJ sen-

tences through the operations of word insertion,

substitution, and deletion. Each ungrammatical

sentence is then tagged with the gold standard

parse tree, a transformation of the original parse

tree of its grammatical counterpart with the in-

tended meaning remained intact. The types of er-

rors introduced include missing word, extra word,

real-word spelling, agreement, and verb form: ac-

cording to Foster, these comprise 72% of the anal-

ysed errors. Subsequently, Foster and Anderson

(2009) developed an automated error generation

tool that can be applied to any text.

Okanohara and Tsujii (2007) attempt to pro-

duce grammatically ill-formed sentences termed

as pseudo-negative examples which are not rep-

resentative of authentic errors but more like ma-

chine translation outputs. Han et al. (2010),

construct an error-annotated English corpus com-

prised of texts written by Korean learners of En-

glish and demonstrate that classifiers trained on

error-annotated data outperform those that trained

exclusively on well-formed data produced by na-

tive English speakers. Dickinson (2010), in other

recent corpus-based research aiming to address

morphological errors found in highly inflecting

languages, creates learner-like morphological er-

rors from a segmented lexicon.

3 Experimental Setup

We first describe the data used, and then the con-

sequent re-training of the parser in the first stage

of the experiments. We follow that with a descrip-

tion of the feature selection metrics for the classi-

fication experiments in the second stage.

3.1 Grammatical and Ungrammatical

Corpora

Given that the goal of the present study is to dis-

tinguish between grammatical and ungrammatical

sentences, two corpora are needed. For the gram-

matical sentences, we take the WSJ treebank by

making the assumption that they are grammati-

cally well-formed. On the other hand, the ungram-

matical sentences are obtained from noisy (dis-

torted) versions of WSJ created by Foster (2007)

and used in Foster et al. (2008). As mentioned ear-

lier, the grammatically ill-formed WSJ sentences

were generated by introducing errors to the ini-

tially well-form WSJ sentences through the oper-

ations of insertion, deletion, and substitution.

It should be noted that there are two noisy ver-

sions of WSJ. The first is a complete parallel of the

original WSJ which consists of 24 sections (from

Section 0 to Section 23) and the second set is a

much smaller one covering only 6 sections (in-

cluding Section 0, Section 2-5, and Section 23).

The latter is considered noisier data since the sen-

tences were generated by applying the error gen-

eration procedures to the first set of ungrammat-

ical WSJ sentences. Hencefore, we denote the

three sets of WSJ treebank as follows: PureWSJ

— the original WSJ; NoisyWSJ — the first set of

less noisy WSJ; and NoisierWSJ — the second set

of more noisy WSJ.

In Figure 1 we give examples of sentences with

trees generated by insertion and deletion, and their

grammatical counterparts.

3.2 Re-training of Parsers

In order to enable a parser to be able to parse un-

grammatical sentences, we re-train a probabilis-

tic parser on both grammatical and ungrammati-

cal corpora. This idea is adopted from Foster et

al. (2008). By and large, we replicate the exper-

iments conducted in Foster et al. (2008) with the

exception that the parser used in our study is the

Stanford Parser (Klein and Manning, 2003), cho-

sen for ease of re-training.

In this first stage, we conduct five experiments

to re-train the Stanford Parser to induce a more

robust parser capable of parsing both grammati-

cal and ungrammatical sentences. In the first three

experiments, three models of parser are induced

by training on three different sets of corpora —

first on the original WSJ (PureWSJ); second on the

noisy WSJ (NoisyWSJ); and third on both the orig-

inal and noisy WSJ (PureWSJ plus NoisyWSJ). We

denote these three parser models as PureParser,

NoisyParser, and MixedParser. In order to gauge

its ability of parsing both grammatical and un-

grammatical sentences, each of these models is
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(S

(NP (EX There))

(VP (VBZ is)

(NP (DT no) (NN asbestos))

(PP (IN in)

(NP (PRP$ our) (NNS products)))

(ADVP (RB now)))

(. .) (’’ ’’))

(S

(NP (EX There))

(VP (VBZ is)

(NP (DT no) (NN asbestos))

(IN at)

(PP (IN in)

(NP (PRP$ our) (NNS products)))

(ADVP (RB now)))

(. .) (’’ ’’))

(S

(S

(NP (RBR More)

(JJ common)

(NN chrysotile)

(NNS fibers))

(VP

(VP (VBP are)

(ADJP (JJ curly)))

(CC and)

(VP (VBP are)

(VP

(ADVP (RBR more) (RB easily))

(VBN rejected)

(PP (IN by)

(NP (DT the) (NN body)))))))

(, ,)

(NP (NNP Dr.) (NNP Mossman))

(VP (VBD explained))

(. .))

(S

(S

(NP (RBR More)

(JJ common)

(NN chrysotile)

(NNS fibers))

(VP

(VP (VBP are)

(ADJP (JJ curly)))

(CC and)

(VP (VBP are)

(VP

(ADVP (RBR more) (RB easily))

(VBN rejected)

(PP [deleted (IN by)]

(NP (DT the) (NN body)))))))

(, ,)

(NP (NNP Dr.) (NNP Mossman))

(VP (VBD explained))

(. .))

Figure 1: Grammatical (left) and ungrammatical (right) versions of sentences, illustrating insertion errors

(top) and deletion errors (bottom)

then evaluated against the three sets of WSJ (i.e.

PureWSJ, NoisyWSJ, and NoisierWSJ) using the

labelled f-score measure.

The last two experiments can be viewed as

the use of an integrated parser, in which each

test sentence is parsed by two types of parser

— one trained exclusively on grammatical data

(i.e. PureParser) and the other trained on some

ungrammatical data (i.e. either NoisyParser or

MixedParser). The best parse is selected by choos-

ing the one with the higher parse probability.

Hence, PureParser is integrated with NoisyParser

for the fourth experiment and with MixedParser

for the last experiment. (It should be noted that all

trainings are performed on Section 2 to Section 21

while all testings are on Section 0.)

3.3 Sentence Classification

This second stage is the core of the present study

where we experiment with production rules as fea-

tures for sentence grammaticality classification.

Apart from the parse probabilities returned to-

gether with the parse trees, we extract the indi-

vidual production rules (from either the gold stan-

dard or the parse trees) and their corresponding

rule probabilities (from parse trees) as classifica-

tion features. The use of the gold standard is

a kind of oracle, to assess the impact of parser

inaccuracies. An example with a grammatical-

ungrammatical pair is given in Figure 2. We ex-

plore various feature selection metrics to obtain a

set of production rules for classifying grammatical

and ungrammatical sentences.

Parse probability features For the feature class

of parse probabilities, we perform similar proce-

dures as in the last two experiments in the first

stage. As before, each sentence (be it for train-

ing or testing) is parsed with two types of parser

— PureParser and either NoisyParser or Mixed-

Parser. The parse probability returned by each

parser type is used as a classification feature.

Therefore, there are only two feature values for

this feature class — the parse probability from

PureParser and the parse probability from either

NoisyParser or MixedParser. A classifier consist-

ing only of these two features is our baseline.

Production rule features We first parse the sen-

tences (for both training and testing) by using the

best performing parser induced from the five ex-

periments in the first stage. Production rules are

then extracted automatically from both the gold

standard and the parser outputs. Various feature

selection metrics are used to select a set of dis-

criminative parse rules as classification features.1

The metrics we use are as follows (with r repre-

senting a production rule and c a class, i.e. gram-

1There were approximately 26K unique production rules
drawn from the training data that could possibly be used as
classification features. However, our machine learner de-
scribed below could not handle this large set of features; but
in any case, further experiments showed that a larger feature
set resulted in a monotonically lower accuracy.
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(ROOT [54.390]

(S [54.288]

(NP [5.152] (EX [1.061] There))

(VP [44.906] (VBZ [0.149] is)

(NP [31.167]

(NP [15.713] (DT [4.930] no) (NN [9.013] asbestos))

(PP [15.047] (IN [1.856] in)

(NP [12.787] (PRP$ [3.179] our) (NNS [4.923] products))))

(ADVP [3.552] (RB [3.224] now)))

(. [0.002] .) (’’ [0.014] ’’)))

(ROOT [62.603]

(S [62.500]

(NP [5.152] (EX [1.061] There))

(VP [53.118] (VBZ [0.149] is)

(PP [39.890]

(ADVP [20.095]

(NP [14.923] (DT [4.930] no) (NN [9.013] asbestos))

(IN [1.780] at))

(IN [1.564] in)

(NP [12.787] (PRP$ [3.179] our) (NNS [4.923] products)))

(ADVP [3.552] (RB [3.224] now)))

(. [0.002] .) (’’ [0.014] ’’)))

Figure 2: Parser outputs for original (left) and insertion-error (right) variants, annotated with log proba-

bilities for each production rule

matical or ungrammatical):

• Frequency (FREQ): We take the n most frequently

occurring parse rules within the grammatical cor-

pus and the ungrammatical corpus, where n ∈
{50, 100, 2500}. Feature values are the relative

frequency of each parse rule within a sentence and

also the binary value of their presence or absence.

• Ratio (RATIO): We take the ratio of the number of

occurrences of a parse rule in the grammatical cor-

pus to the number of occurrences of that rule in the

ungrammatical corpus. We pick the 50 parse rules

with the highest ratio and another 50 parse rules

with the lowest ratio as features. Feature values

are of binary type.

• Mutual information (MI): We calculate the mutual

information between a parse rule and each class

(i.e grammatical and ungrammatical). The 100

parse rules with the highest mutual information are

selected as features with binary-typed values. We

adopt the formula from Yang and Pedersen (1997):

MI(r, c) = log
Pr (r ∧ c)

Pr (r) Pr (c)
(1)

• Information gain, version 1 (IG-FREQ): We pick

the 100 and 500 rules with the highest informa-

tion gain as features. The formula is again adopted

from Yang and Pederson (1997), with m = 2.

IG(r) = −
∑

m

i=1
Pr (ci) log Pr (ci)

+ Pr (r)
∑

m

i=1
Pr (ci|r) log Pr (ci|r)

+ Pr (r̄)
∑

m

i=1
Pr (ci|r̄) log Pr (ci|r̄) (2)

• Information gain, version 2 (IG-PROB): In addi-

tion, we attempt a different way to calculate the in-

formation gain of a parse rule, where the probabil-

ity of each parse rule Pr(r) is estimated based on

its rule probabilities extracted from the parse trees

instead of its occurrence in the corpora. Hence,

Pr(r) is the sum of all the parse probabilities of a

parse rule divided by the sum of the parse proba-

bility of all the parse trees. All feature values are

of binary type. The intuition is that it might not

be particular production rules that are character-

istic of grammaticality, but their probability: for

example, ungrammatical parses might have more

unlikely rules. As an illustration, the grammati-

cal tree in Figure 2 (left) has log prob 44.906 at

the highest VP node, while the ungrammatical tree

(right) has log prob 53.118; notwithstanding the

contribution of 1.780 from the insertion of the lex-

ical item at, there are some unlikely production

rules in this subtree of the ungrammatical tree.

• Bi-normal separation (BNS): Forman (2003) sug-

gested that this feature selection metric can be

competitive with information gain. The metric is

defined as below, where F(x) = cumulative proba-

bility function of a normal distribution:

BNS(r, c) =
∣

∣F
−1(Pr (r|c)) − F

−1(Pr (r|c̄))
∣

∣ (3)

Similarly, the 100 and 500 rules with the highest

BNS scores are selected as classification features

with binary-typed values.

Besides investigating these five feature selec-

tion methods individually, we also explore the ef-

fects of their combinations as well as the combi-

nation with parse probabilities.

Training set The training set is a balanced set

of grammatical and ungrammatical sentences. As

mentioned in Section 3.1, the grammatical sen-

tences are adopted from the PureWSJ, while the

ungrammatical sentences are from the NoisyWSJ;

both are based on Section 2 to Section 21. There

are 79664 sentences in total for training.

Testing set The testing set is also a balanced

set of grammatical and ungrammatical sentences.

However, we have two sets of testing data. The

first set is formed from PureWSJ and NoisyWSJ,
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Exp Parser PureWSJ NoisyWSJ NoisierWSJ

1 PureParser 85.61 78.42 72.64

2 NoisyParser 84.31 80.32 76.19

3 MixedParser 82.63 78.69 74.25

4 Pure-NoisyParser 85.39 80.43 76.40

5 Pure-MixedParser 85.49 80.04 75.53

Table 1: Parsing results (labelled f-score %) of five

experiments on three versions of WSJ Section 0

and the second set is from PureWSJ and Noisier-

WSJ; all are based on Section 0. The latter set is

used to testify whether the degree of noisiness in

the data would have any effects on the classifica-

tion performance. There are 3840 sentences in to-

tal for testing.

Classifiers A support vector machine (SVM) is

used for all the classification tasks. We use the

online SVM tool LIBSVM (Version 2.89), imple-

mented by Chang and Lin (2001). All the classi-

fications are first conducted under the default set-

tings where the radial basic function (RBF) kernel

is used. The kernel is further tuned to find the best

pair of parameters (C, γ) for an optimal classifi-

cation model. 2 In addition to SVM, another ma-

chine learner — logistic regression — is also ex-

amined to study its effects on classification. Here,

we use the logistic regression classifier with ridge

regularization from WEKA (Version 3.6.1) (Wit-

ten and Frank, 2005).

4 Results

4.1 Parsers

In Table 1, we present the parsing results of the

five experiments conducted in the first stage where

the intention is to induce a more robust parser that

can handle ungrammatical sentences without com-

promising its performance on grammatical ones.

The integrated parser in Experiment 4 — Pure

Parser integrated with Noisy Parser — is able to

attain a relatively good parsing performance for

ungrammatical data while at the same time main-

taining its performance for grammatical data. This

parser is therefore the one that was used for all the

parsing tasks in the second stage.

2As there is no significant difference between the classi-
fication results prior to and after tuning, we only report the
prior ones. In addition, no other kernels demonstrated better
results than the RBF, so we omit these.

Feature PureWSJ-NoisyWSJ PureWSJ-NoisierWSJ

Parse Prob 65.42 74.19

Table 2: SVM results (accuracy %) with parse

probabities as features on both NoisyWSJ and

NoisierWSJ

Feature (Metrics) Gold Standard Parser Output

FREQ 64.35 53.28

RATIO 50.08 50.0

MI 50.0 n/a

IG-FREQ 67.65** 60.67

IG-PROB n/a 54.22

BNS 63.75 57.58

Table 3: SVM results (%) with parse rules as fea-

tures on NoisyWSJ — based on top 100 rules from

both gold standard and parser outputs

4.2 Classification

4.2.1 Parse Probabilities

For classification, by using just parse probabili-

ties alone as features, we can see that a reasonably

good accuracy is achievable (see Table 2). As ex-

pected, for more noisy data, their ability to distin-

gush grammatical sentences from ungrammatical

sentences is even more prominent — comparing

the classification accuracy of 65.42% (NoisyWSJ)

with 74.19% (NoisierWSJ). This classifier is our

baseline for the rest of the sentence grammatical-

ity classifications utilising production rules.

4.2.2 Production Rules

As mentioned in Section 3.3, we first examined

the production rules extracted from both the gold

standard and the parser outputs with five different

feature selection metrics. The classification ac-

curacies achieved by using the top 100 rules for

the testing of the less noisy ungrammatical data

— NoisyWSJ — are shown in Table 3.

It appears that standard information gain (IG-

FREQ) outperforms the rest of the selection met-

rics and it is the only one that performs better than

parse probabilities if the gold standard parse trees

were available (with this result being statistically

significant with 95% confidence). 3 It is, however,

worth noting that information gain which utilises

rule probabilities (IG-PROB) does not turn out to

be a better discriminant as compared to informa-

tion gain (IG-FREQ). Bi-normal separation and

frequency are the next potential candidates; but the

former is a better choice in the absence of the gold

standard. Ratio and mutual information perform

no better than chance.

3All significance tests are based on the McNemar’s test.
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Feature (Metrics) n = 200 n = 500 n = 2500

FREQ 54.84 n/a 54.04

MI n/a 50.0 n/a

IG-FREQ n/a 58.72 n/a

BNS n/a 61.93 n/a

Table 4: SVM results (%) with parse rules as fea-

tures on NoisyWSJ — based on larger numbers of

rules from gold standard

Feature (Metrics) Gold Standard Parser Output

IG-FREQ 75.65* 63.44

BNS 71.2 61.51

Table 5: SVM results (%) with parse rules as fea-

tures on NoisierWSJ — based on top 100 rules

from both gold standard and parser outputs

Table 4 presents results showing the impact of

using more production rules as selected by the var-

ious metrics; and the results were all poorer than

using just 100 rules. In view of this poorer re-

sult, we subsequently made use of only the top 100

rules for all the subsequent classifications.

Next, we performed testing on more noisy data

— NoisierWSJ — to see whether the degree of

noisiness in data would have any effects on the

classification. Not surprisingly, the more noisy

data appears to be easier to be distingushed from

the grammatically well-formed data (see Table 5).

Similarly, standard information gain (IG-FREQ)

may perform better than parse probabilities if the

gold standard were available (although this is only

marginally statistically significant at 90% confi-

dence.) We only examined two metrics here —

IG-FREQ and BNS — as these are the two most

competitive ones.

4.2.3 Combinations of Features

From the tables above, it is observed that using

production rules by itself for sentence grammat-

icality classification is generally not better than

using parse probabilities alone. We therefore at-

tempted to combine the various metrics for parse

rules as well as with the parse probabilities. Again,

we use only IG-FREQ and BNS.

Table 6 shows that combining various metrics

for production rules does not lead to any sig-

nificant improvement in classification accuracy

Features IG-FREQ+BNS IG-FREQ+FREQ BNS+FREQ

NoisyWSJ 64.76 66.38 63.98

Table 6: SVM results (%) with the combinations

of metrics as features on NoisyWSJ — based on

top 100 rules from gold standard

Features NoisyWSJ NoisierWSJ

IG-FREQ (gold standard)
66.59*** 77.58***

+ Parse probabilities

IG-FREQ (parser output)
65.6 75.31***

+ Parse probabilities

BNS (gold standard)
66.85*** 77.66***

+ Parse probabilities

BNS (parser output)
66.02* 75.6***

+ Parse probabilities

Table 7: SVM results (%) with the combinations

of parse rules (IG-FREQ and BNS) and parse prob-

abilities as features

Feature (Metrics) NoisyWSJ NoisierWSJ

IG-FREQ (gold standard) 67.65 75.65

IG-FREQ (parser output) 60.83 63.41

BNS (gold standard) 63.83 71.28

BNS (parser output) 57.97 62.79

Table 8: Logistic regression results (%) with parse

rules as features — based on top 100 rules from

both gold standard and parser outputs

(i.e. their combinations still do not perform bet-

ter than using parse probabilities alone). However,

combining parse rules with parse probabilities as

shown in Table 7 does demonstrate some mod-

est improvement of 1.6% on average in the overall

classification accuracy. With either gold standard

or parser-derived production rules, combinations

on more noisy data (NoisierWSJ) are statistically

better than just using parse probabilities alone (all

marked with *** are significant at 99% confidence

level). This is also true on the less noisy data

(NoisyWSJ), but only for gold standard production

rules.

4.2.4 Effects of Classifiers

As mentioned in Section 3.3, we also examined

the effects of using a different classifier — logis-

tic regression. It appears that logistic regression

performs on par with SVM as seen in some of the

results for logistic regression presented in Table 8.

5 Discussion

Classification accuracy The overall classifica-

tion accuracies are broadly in line with the pub-

lished literature (approximately 65% to 80%), al-

though direct comparisons are not possible be-

cause of the use of different data sets. Our clas-

sification accuracy may have been affected by the

choice of parser. Our parser (Stanford) turns out

to perform at a somewhat lower level compared to

the one used in Foster et al. (2008) (Charniak and

Johnson): on the original (grammatical) WSJ, the

f-scores are around 85% vs 90%, while there is
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(ROOT [84.000]

(S [83.897]

(NP [29.684]

(NP [12.409] (DT [2.450] The) (NN [8.188] turmoil))

(PP [16.908] (IN [1.856] in)

(NP [14.648] (NN [6.372] junk) (NNS [4.550] bonds))))

(VP [51.379] (MD [2.484] may)

(ADVP [36.195] (RB [7.225] last)

(PP [25.506] (IN [2.250] for)

(NP [22.367] (NNS [3.946] years) (, [0.000] ,)

(NNS [4.558] investors)

(CC [0.162] and)

(NNS [5.318] traders))))

(VP [7.861] (VB [4.808] say)))

(. [0.002] .)))

(ROOT [92.809]

(S [92.686]

(NP [37.595]

(NP [12.467] (DT [2.568] The) (NN [8.058] turmoil))

(PP [16.972] (IN [1.869] in)

(NP [14.666] (NN [6.290] junk) (NNS [4.654] bonds)))

(VBD [1.270] was))

(VP [51.659] (MD [2.518] may)

(VP [35.837] (VB [6.911] last)

(PP [25.929] (IN [2.299] for)

(NP [22.908] (NNS [3.981] years) (, [0.000] ,)

(NNS [4.578] investors)

(CC [0.163] and)

(NNS [5.287] traders))))

(VBZ [4.723] say))

(. [0.002] .)))

Figure 3: Example of rule selected by IG-FREQ

Feature (Metrics) Prod Rule Gram Ungram

Information Gain NP → DT DT JJ NN 2 225

(IG-FREQ) VP → TO TO VP 0 89

PP → IN IN S 0 73

PP → NN IN NP 0 70

NP → NP PP VBD 0 54

Bi-normal PP → IN IN NP 105 1858

Separation NP → NP IN PP 6 275

(BNS) VP → VBZ VBZ NP 0 157

NP → DT DT NN 2 531

S → NP VBD VP . 0 242

Ratio NP → NP , NP , VBD 0 48

NP → VBP DT JJ CD 0 15

PP → CD IN NP 0 9

VP → VB VP PRP 0 9

S → CC CC NP VP 0 48

Table 9: Examples of parse rules chosen by vari-

ous metrics (IG-FREQ, BNS, and RATIO)

a slightly bigger difference on the noisy data set,

with f-scores of 78–80% vs 85–90%.

Analysis of features We admit to some surprise

that looking in detail at production rules did not

perform better in general. We examined some of

the chosen features under each metric, and these

do appear to be strongly characteristic of ungram-

matical parses; in particular, there are several in-

stances where probabilities used in IG-PROB ap-

pear in our inspection to differ quite noticeably

between grammatical and ungrammatical alterna-

tives. We present the top 5 for each of IG-FREQ,

BNS and RATIO in Table 9, along with the num-

ber of counts in the grammatical versus ungram-

matical training corpora. Figure 3 shows an exam-

ple of one of these rules in a corpus instance.

The problem may be due to feature vector spar-

sity; looking at other types of cross-sections of

parse trees, not only horizontal production rules,

(as is done in the parse reranking approach of

Charniak and Johnson (2005)), may help with this.

Substitution rules Inspecting the features

above, it appears to be the case that substitution

cases are hard to detect because the parser is

too robust. The way that the Stanford parser

handles cases of substitution, even where there is

a significant change of part of speech (e.g. if for

is, an example generated in the ungrammatical

corpus), results in a parse that is identical to

the original grammatical one: the parser is not

troubled at all by the ungrammaticality. Supple-

menting production rules and parser probabilities

by n-grams is likely to improve this.

Feature selection metrics It was not entirely

surprising that mutual information performed

poorly: it tends to select rare instances (Manning

and Schutze, 1999) and often does poorly in classi-

fication tasks (Forman, 2003). Also as per Forman

(2003), IG and BNS performed well. Interestingly,

IG perform better in every case with rules alone,

while BNS performed better in every combination

of rules with parse probabilities, which was over-

all better than rules alone.

6 Conclusion

The present study has confirmed that parse prob-

abilities are good discriminators for judging the

grammaticality of sentences. The idea of exploit-

ing details of the parses in the form of production

rules, combined with the parse probabilities, leads

to some modest improvement to the overall classi-

fication performance.

There are a number of ways in which we might

develop further. One would be to use a wider range

of features, as in the parser reranking approach

noted in Section 5, to avoid sparsity problems. An

alternative would be to adopt the noisy channel

model: in an alternative to Brockett et al. (2006),

ungrammatical trees would be considered noisy

versions of their grammatical counterparts. Ap-

plying the approach to real ESL data might have

different results, with the kinds of errors being less

constrained and hence perhaps leading to more

significant, and detectable, parse tree changes.
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