
Parsing Internal Noun Phrase Structure with Collins’ Models

David Vadas and James R. Curran
School of Information Technologies

University of Sydney
NSW 2006, Australia�

dvadas1, james � @it.usyd.edu.au

Abstract

Collins’ widely-used parsing models treat

noun phrases (NPs) in a different manner

to other constituents. We investigate these

differences, using the recently released in-

ternal NP bracketing data (Vadas and Cur-

ran, 2007a). Altering the structure of the

Treebank, as this data does, has a num-

ber of consequences, as parsers built using

Collins’ models assume that their training

and test data will have structure similar to

the Penn Treebank’s.

Our results demonstrate that it is difficult

for Collins’ models to adapt to this new

NP structure, and that parsers using these

models make mistakes as a result. This

emphasises how important treebank struc-

ture itself is, and the large amount of in-

fluence it can have.

1 Introduction

Collins’ parsing models (Collins, 1999) are widely

used in natural language processing (NLP), as they

are robust and accurate for recovering syntactic

structure. These models can be trained on a wide

variety of domains and languages, such as biological

text, Chinese and Arabic. However, Collins’ models

were originally built for the Penn Treebank (Marcus

et al., 1993), and as such, are predisposed to parsing

not only similar text, but also similar structure.

This paper deals with the effects of assuming such

a structure, after the Treebank has been altered. We

focus on noun phrases (NPs) in particular, for two

reasons. Firstly, there are a number of intricacies

as part of Collins’ model in this area. Indeed, a

Collins-style parser uses a different model for gen-

erating NPs, compared to all other structures. Sec-

ondly, we can make use of our previous work in

annotating internal NP structure (Vadas and Curran,

2007a), which gives us a ready source of Penn Tree-

bank data with an altered structure.

Using this extended corpus, we make a number of

alterations to the model itself, in an attempt to im-

prove the parser’s performance. We also examine

the errors made, focusing on the altered data in par-

ticular, and suggest ways that performance can be

improved in the future.

Next, we look at what effect the NP bracketing

structure has. The existing Penn Treebank uses a

generally flat structure (especially in NPs), but when

internal NP brackets are introduced this is no longer

the case. We determine what is the best representa-

tion to use for these new annotations, and also ex-

amine why that is.

Finally, we experiment with the task of identify-

ing apposition within NPs, using manually annotated

data as a gold standard. Although we find that this

is a relatively easy task, the parser’s performance is

very low. The reasons for why Collins’ models are

unable to recover this structure are then explored.

The work described here raises questions about

how researchers create NLP models, which may be

for any task and not just parsing. Implicitly assum-

ing that data will always retain the same structure

can, as the results described here show, cause many

problems for researchers in the future.

Proceedings of the Australasian Language Technology Workshop 2007, pages 109-116

109

mailto:@it.usyd.edu.au

2 Background

We present here a brief introduction to Collins’

(1999) models, focusing in particular on how they

generate NPs. All of the models use a Probablistic

Context Free Grammar (PCFG), with the Penn Tree-

bank training data used to define the grammar, and

to estimate the probabilities of the grammar rules be-

ing used. The CKY algorithm is then used to find the

optimal tree for a sentence.

The grammar is also lexicalised, i.e. the rules

are conditioned on the token and the POS tag of the

head of the constituent being generated. Estimat-

ing probabilities over the grammar rule, the head and

the head’s POS is problematic because of sparse data

problems, and so generation probabilities are broken

down into smaller steps. Thus, instead of calculating

the probability of the entire rule, we note that each

rule can be framed as follows:

� � � � 	 � � � � � � � � � � � � � � � � � � � � " � � � � � � % � " % �

(1)

where
�

is the head child,
� � � � � � � � � � � � �

are its

left modifiers and
� � � " � � � � � � % � " % �

are its right

modifiers. If we make independence assumptions

between the modifiers, then using the chain rule

yields the following equations:
� 0 � � 2 � 4 " 6 7 9 : � �

(2)<
= > � @ @ @

� C � � = � � = � 2 � 4 " 6 7 9 : � : � �
(3)

<
= > � @ @ @ %

� K � � = � " = � 2 � 4 " 6 7 9 : � : � �
(4)

So the head is generated first, then the left and

right modifiers (conditioned only on the head1) af-

terwards.

Now this differs for base-NPs, which use a slightly

different model. Instead of conditioning on the

head, the current modifier is dependant on the pre-

vious modifier, resulting in a sort of bigram model.

Formally, equations 3 and 4 above are changed as

shown below:
<

= > � @ @ @
� C � � = � � = � 2 � 4 " 6 7 9 : � = M � � � = M � � �

(5)

<
= > � @ @ @ %

� K � � = � " = � 2 � 4 " 6 7 9 : � = M � � " = M � � �
(6)

1There are also distance measures, the subcategorisation
frame, etc, but they are not relevant for this discussion as they
do not affect NPs.

There are a few reasons given by Collins for this.

Most relevant for this work, is that because the Penn

Treebank does not fully bracket NPs, the head is un-

reliable. When generating crude in the NP crude

oil prices, we would want to condition on oil,

the true head. However, prices is the head that

would be found. Using the special NP submodel

thus results in the correct behaviour. As Bikel (2004)

notes, the model is not conditioning on the previous

modifier instead of the head, the model is treating

the previous modifier as the head.

The separate NP submodel also allows the parser

to learn NP boundaries effectively, i.e. it is rare for

words to precede the in an NP; and creates a distinct

X-bar level, which Collins notes is helpful for the

parser’s performance.

In order to implement the separate base-NP sub-

model, a preprocessing step is taken wherein NP

brackets that do not dominate any other non-

possessive NP nodes are relabelled as NPB. For con-

sistency, an extra NP bracket is inserted around NPB

nodes not already dominated by an NP. These NPB

nodes are reverted before evaluation.

In our previous work (Vadas and Curran, 2007a),

we annotated the full structure of NPs in the Penn

Treebank. This means that the true head can be iden-

tified, which may remove the need to condition on

the previous modifier. We will experiment with this

in Section 3.2.

2.1 Treebank Structure

Other researchers have also looked at the effect of

treebank structure upon parser performance. Collins

himself notes that binary trees would be a poor

choice, as the parser loses some context sensitivity,

and the distance measures become ineffective. He

advocates one level of bracketing structure per X-

bar level.

Goodman (1997) explicitly converts trees to a bi-

nary branching format as a preprocessing step, in or-

der to avoid these problems. Johnson (1998) finds

that the performance of simple PCFGs can be im-

proved through tree transformations, while Klein

and Manning (2001) observe that some simple tree

transforms can increase parser speed. The varia-

tion shown in these approaches, all to the same task,

highlights the difficulty in identifying optimal tree

stucture.

110

PREC. RECALL F-SCORE

Original PTB 88.88 88.85 88.86
NML and JJP bracketed PTB 88.55 88.15 88.35
Original structure 88.81 88.88 88.85
NML and JJP brackets only 76.32 60.42 67.44

Table 1: Parser performance

The issue of treebank structure extends to other

languages as well, and implies further difficulties

when comparing between languages. Kübler (2005)

investigates two German treebanks with different

annotation schemes, and finds that certain proper-

ties, such as having unary nodes and flatter clauses,

increase performance. Rehbein and van Genabith

(2007) suggest that the treebank structure also af-

fects evaluation methods.

3 Internal NP Brackets

We begin by analysing the performance of Collins’

model, using the Vadas and Curran (2007a) data.

This additional level of bracketing in the Penn Tree-

bank consists of NML and JJP brackets to mark inter-

nal NP structure, as shown below:

(NP (NML (NN crude) (NN oil))
(NNS prices))

(NP (NN world) (NN oil) (NNS prices))

In the first example, a NML bracket has been inserted

around crude oil to indicate that the NP is left-

branching. In the second example, we do not ex-

plicitly add a bracket around oil prices, but the

NP should now be interpreted implicitly as right-

branching.

The experiments are carried out using the Bikel

(2004) implementation of the Collins (1999) parser.

We use Sections 02-21 for training, and report la-

belled bracket precision, recall and F-scores for all

sentences in Section 00.

Firstly, we compare the parser’s performance on

the original Penn Treebank to when it is retrained

with the new NML and JJP bracketed version. Ta-

ble 1 shows that the new brackets make parsing

marginally more difficult overall (by about 0.5% in

F-score). However, if we evaluate only the original

structure, by excluding the new NML and JJP brack-

ets, then we find that the F-score has dropped by

only a negligible amount. This means that the drop

in overall performance results from low accuracy on

the new NML and JJP brackets.

PREC. RECALL F-SCORE

Overall 88.09 87.77 87.93
Original structure 87.92 88.68 88.30
NML and JJP brackets only 100.00 53.54 69.74

Table 2: Parser performance with relabelled brackets

Bikel’s parser does not come inbuilt with an ex-

pectation of NML or JJP nodes in the treebank, and

so it is not surprising that these new labels cause

problems. For example, head-finding for these con-

stituents is undefined. Also, as we described previ-

ously, NPs are treated differently in Collins’ model,

and so changing their structure could have unex-

pected consequences.

In an attempt to remove any complications intro-

duced by the new labels, we relabelled NML and JJP

brackets as NP and ADJP, and then retrained again.

These are the labels that would be given if internal

NP structure was originally bracketed with the rest

of the Penn Treebank. This relabelleling means that

the model does not have to discriminate between two

different types of noun and adjective structure, and

for this reason, we might expect to see an increase

in performance. This approach is also easy to im-

plement, and eliminates the need for any change to

the parser itself.

The results in Table 2 show that this is not the

case, as the overall F-score has dropped another

0.5%. The NML and JJP brackets cannot be evalu-

ated directly in this experiment, but we can compare

against the corpus without relabelling, and count

correct bracketings whenever a test NP matches a

gold NML. The same is done for ADJP and JJP brack-

ets. This results in a precision of 100%, because

whenever a NML or JJP node is seen, it has already

been matched against the gold-standard. Also, some

incorrect NP or ADJP nodes are in fact false NML or

JJP nodes, but this difference cannot be recovered.

We carried out a visual inspection of the errors

that were made in this experiment, but which hadn’t

been made when the NP and NML labels were distinct.

It was noticable that many of these errors occurred

when a company name or other entity needed to be

bracketed, such as W.R. Grace in the example NP

below:

(NP
(ADVP (RB formerly))
(DT a) (NML (NNP W.R.) (NNP Grace))
(NN vice) (NN chairman))

111

PREC. RECALL F-SCORE

Overall 88.51 88.07 88.29
Original structure 88.78 88.86 88.82
NML and JJP brackets only 75.27 58.33 65.73

Table 3: Performance with correct head-finding

We conclude that the model was not able to gener-

alise a rule that multiple tokens with the NNP POS tag

should be bracketed. Even though NML brackets of-

ten follow this rule, NPs do not. As a result, the dis-

tinction between the labels should be retained, and

we must change the parser itself to deal with the new

labels properly.

3.1 Head-finding Rules

The first and simplest change we made was to cre-

ate head-finding rules for NML and JJP constituents.

In the previous experiments, these nodes would be

covered by the catch-all rule, which chooses the left-

most child as the head. This is incorrect in most

NMLs, where the head is usually the rightmost child.

We define NML and JJP rules in the parser data file,

copying those used for NPs and ADJPs respectively.

We also add to the rules for NPs, so that child NML

and JJP nodes can be recursively examined, in the

same way that NPs and ADJPs are. This change is not

needed for other labels, as NMLs and JJPs only exist

under NPs. We retrained and ran the parser again

with this change, and achieve the results in Table 3.

Once again, we are surprised to find that the F-

score has been reduced, though only by 0.06% over-

all in this case. This drop comes chiefly from the NML

and JJP brackets, whose performance has dropped

by about 2%. As before, we scanned the errors

in search of an explanation; however, there was no

readily apparent pattern. It appears that conditioning

on the incorrect head is simply helpful when pars-

ing some sentences, and instances where the correct

head gives a better result are less frequent.

3.2 The Base-NP Submodel

The next alteration to the parser is to turn off the

base-NP submodel. Collins (1999, page 179) ex-

plains that this separate model is used because the

Penn Treebank does not fully annotate internal NP

structure, something that we have now done. Hope-

fully, with these new brackets in place, we can re-

move the NP submodel and perhaps even improve

performance in doing so.

PREC. RECALL F-SCORE

Overall 72.11 87.71 79.14
1 Original structure 72.09 88.19 79.33

NML /JJP brackets only 72.93 69.58 71.22
Overall 87.37 87.17 87.27

2 Original structure 87.75 87.65 87.70
NML /JJP brackets only 72.36 69.27 70.78
Overall 86.83 86.46 86.64

3 Original structure 86.90 88.66 87.77
NML /JJP brackets only 48.61 3.65 6.78

Table 4: Performance with the base-NP model off
NP

NP

NP PP

PP

Figure 1: An unlikely structure

We experimented with three different approaches

to turning off the base-NP model. All three tech-

niques involved editing the parser code:

1. Changing the � � � � � � �
 � �
method to always

return false. This means that the main model,

i.e. equations 3 and 4 are always used.

2. Removing the preprocessing step that creates

NPB nodes. This alteration will have the same

effect as the one above, and will also remove

the distinction between NP and NPB nodes.

3. Changing the � � �
 � �
method to return true for

NMLs. This will affect which NPs are turned into

NPBs during the preprocessing step, as NPs that

dominate NMLs will no longer be basal.

The third change does not turn the base-NP model

off as such, but it does affect where it functions.

The results are in Table 4, and in all cases the

overall F-score has decreased. In the 1st change, to

� � � � � � �
 � �
, performance on NML and JJP brackets

has actually increased by 3.78% F-score, although

the original structure is almost 10% worse. The 2nd

change, to the preprocessing step, results in a much

smaller loss to the original structure, but also not

as big an increase on the internal NP brackets. The

3rd change, to � � �
 � �
, is most notable for the large

drop in performance on the internal NP structure.

There are a few reasons for these results, which

demonstrate the necessity of the base-NP submodel.

Collins (1999, � 8.2.2) explains why the distinction

between NP and NPB nodes is needed: otherwise,

112

ERROR # % FP FN EXAMPLE

Modifier attachment 213 38.04 56 157
NML 122 21.79 21 101 lung cancer deaths �
Internal Entity Structure 43 7.68 24 19 (Circulation Credit) Plan �
Appositive Title 29 5.18 6 23 (Republican Rep.) Jim Courter �
JJP 10 1.79 4 6 (More common) chrysotile fibers �
Company/name postmodifiers 9 1.61 1 8 (Kawasaki Heavy Industries) Ltd. �

Mislabelling 92 16.43 30 62 (ADJP more influential) role �
Conjunctions 92 16.43 38 54 (cotton and acetate) fibers �

Company names 10 1.79 0 10 (F.H. Faulding) & (Co.) �
Possessives 61 10.89 0 61 (South Korea) ’s �
Speech marks and brackets 35 6.25 0 35 (“ closed-end ”) �
Clearly wrong bracketing 45 8.04 45 0

Right-branching 27 4.82 27 0 (NP (NML Kelli Green)) �
Unary 13 2.32 13 0 a (NML cash) transaction �
Conjunction 5 0.89 5 0 (NP a (NML savings and loan)) �

Structural 8 1.43 3 5 (NP � � � construction spending) (VP (VBZ figures) � � � �
Other 14 2.50 8 6
Total 560 100.00 180 380

Table 5: Error analysis

structures such as that in Figure 1, which never oc-

cur in the Treebank, are given too high a probability.

The parser needs to know where NPs will not recurse

anymore (when they are basal), so that it can gener-

ate the correct flat structure. Furthermore, the 3rd

change effectively treats NP and NML nodes as equiv-

alent, and we have already seen that this is not true.

3.3 Error Analysis

So far, all our changes have had negative results. We

need to look at the errors being made by the parser,

so that any problems that appear can be solved. Ac-

cordingly, we categorised every NML and JJP error

through manual inspection. The results of this anal-

ysis are shown in Table 5, together with examples of

the errors being made. Only relevant brackets and

labels are shown in the examples, while the final col-

umn describes whether or not the particular bracket-

ing shown is correct.

The most common bracketing error results in a

modifier being attached to the wrong head. In the

example, because there is no bracket around lung

cancer, there is a dependency between lung and

deaths, instead of lung and cancer. We can further

divide these errors into general NML and JJP cases,

and instances where the error occurs inside a com-

pany name or in a person’s title.

These errors occur because the ngrams that need

to be bracketed simply do not exist in the training

data. Looking for each of the 142 unique ngrams

that were not bracketed, we find that 93 of them do

not occur in Sections 02-21 at all. A further 17 of

the ngrams do occur, but not as constituents, which

would make reaching the correct decision even more

difficult for the parser. In order to fix these problems,

an outside source of information must be consulted,

as the lexical information is currently not available.

The next largest source of errors is mislabelling

the bracket itself. In particular, distinguishing be-

tween using NP and NML labels, as well as ADJP and

JJP, accounts for 75 of the 92 errors. This is not

surprising, as we noted during the preparation of the

corpus that the labels of some NPs were inconsistant

(Vadas and Curran, 2007a). The previous relabelling

experiment suggests that we should not evaluate the

pairs of labels equally, meaning that the best way to

fix these errors would be to change the training data

itself. This would require alterations to the original

Penn Treebank brackets, which is not feasible here.

Conjunctions are another significant source of er-

rors, and are quite a difficult problem. This is be-

cause coordinating multi-token constituents requires

brackets around each of the constituents, as well as

a further bracket around the entire conjunction. Get-

ting just a single decision wrong can mean that a

number of these brackets are in error.

Another notable category of errors arises from

possessive NPs, which always have a bracket placed

around the possessor in our annotation scheme. The

parser is not very good at replicating this pattern,

perhaps because these constituents would usually

not be bracketed if it weren’t for the possessive. In

113

particular, NML nodes beginning with a determiner

are rare, only occurring when a possessive follows.

The parser also has difficulty in replicating the

constituents around speech marks and brackets. We

suspect that this is due to the fact that Collins’ model

does not generate punctuation as it does other con-

stituents. There is also less need for speech marks

and brackets to be correct, as the standard evalua-

tion does not find an error when they are placed in

the wrong constituent. The justification for this is

that during the annotation process, they were given

the lowest priority, and are thus inconsistant.

There are a number of NML and JJP brackets in

the parser’s output that are clearly incorrect, either

because they define right-branching structure (which

is not bracketed explicitly) or because they dominate

only a single token. Single token NMLs exist only

in conjunctions, but unfortunately the parser is too

liberal with this rule.

The final major group of errors are structural; that

is, the entire parse for the sentence is malformed, as

in the example where figures is actually a noun.

From this analysis, we can say that the modifier

attachment problem is the best to pursue. Not only

is it the largest cause of errors, but there is an obvi-

ous way to reduce the problem: find and make use

of more data. This data does not need to be anno-

tated, as we demonstrated in previous NP bracketing

experiments (Vadas and Curran, 2007b), which at-

tained a positive result. However, incorporating the

data into Collins’ model is still difficult. Our pre-

vious work only implemented a post-processor that

ignored the parser’s output. There is still room for

improvement in this area.

4 Bracket Structure

We have now seen how a Collins-style parser per-

forms on internal NP structure, but a question re-

mains about the structure itself: is it optimal for

the parser? It may be argued that a better represen-

tation is to explicitly bracket right-branching struc-

ture. For example, in the NP the New York Stock

Exchange, if there was a bracket around New York

Stock Exchange, then it would be useful training

for when the parser comes across New York Stock

Exchange composite trading (which it does quite

often). The parser should learn to add a bracket in

PREC. RECALL F-SCORE

Overall 87.33 86.36 86.84
Original structure 87.96 88.06 88.01
NML and JJP brackets only 82.33 74.28 78.10

Table 6: Explicit right-branching structure

both cases. Explicit right-branching brackets could

also remove some of the clearly wrong bracket er-

rors in Table 5.

The current bracketing guidelines do not mark

right-branching constituents, they are simply as-

sumed implicitly to be there. We can automatically

add them in however, and then examine what differ-

ence this change makes. We find, in Table 6, that

overall performance drops by 1.51% F-score.

This was surprising result, as there are a num-

ber of easily recoverable brackets that are introduced

by making right-branching structure explicit. For

example, a POS tag sequence of DT NN NN is al-

ways right-branching. This explains the more than

10% increase in F-score when evaluating internal NP

brackets only. As Rehbein and van Genabith (2007)

found, increasing the number of non-terminal nodes

has caused an increase in performance, though we

may question, as they do, whether performance has

truly increased, or whether the figure is simply in-

flated by the evaluation method.

On the other hand, the increased number of brack-

ets has had a deleterious effect on the original brack-

ets. This result suggests that it is better to leave

right-branching structure implicit.

5 Appositions

The results in this paper so far, have been attained

using noun modifier data. This final set of experi-

ments however, focuses upon a different kind of in-

ternal NP structure: appositions. We thus show that

the effects of treebank structure are important for a

wider range of constructions, and demonstrate once

again the difficulty experienced by a model that must

adapt to altered data.

Appositions are a very common linguistic con-

struction in English. They have been used in areas

such as Information Extraction (Sudo et al., 2003)

and Question Answering systems (Moldovan et al.,

2003), however there is little work on automatically

identifying them. Researchers have typically used

simple patterns for this task, although the accuracy

114

of this method has not been determined. We will

compare how well Bikel’s parser performs.

As in our previous experiments, we use the Penn

Treebank, as it contains numerous appositions, such

as the (slightly edited) example shown below:

(NP-SBJ
(NP (NNP Darrell) (NNP Phillips))
(, ,)
(NP (NN vice) (NN president)))

Appositional structure is, of course, not anno-

tated in the Penn Treebank, and so we manually

added gold-standard apposition brackets to the cor-

pus. This was actually done during the annotation

process for the Vadas and Curran (2007a) data. For

example, we add a new bracket labelled APP to the

previous noun phrase:

(NP-SBJ
(APP
(NP (NNP Darrell) (NNP Phillips))
(, ,)
(NP (NN vice) (NN president))))

We should note that we only look at nonrestric-
tive apposition, i.e. where NPs are separated by

punctuation (usually a comma, but also a colon or

dash). Cases of close apposition, as in the vice

president Darrel Phillips have been shown to

have a different interpretation (Lee, 1952) and also

present more difficult cases for annotation.

There are 9,082 APP constituents in the corpus, out

of the 60,959 NPs (14.90%) that were manually in-

spected during the annotation process. We measured

inter-annotator agreement by comparing against a

second annotator on Section 23. This resulted in an

F-score of 90.41%, with precision of 84.93% and

recall of 96.65%. The precision was notably low be-

cause the second annotator inserted APP nodes into

NPs such as the one shown below:

(NP
(APP
(NP

(QP ($ $) (CD 1.7) (CD million))
(-NONE- *U*))

(, ,)
(CC or)
(NP

(NP (CD 21) (NNS cents))
(NP-ADV (DT a) (NN share)))))

and while these cases are appositive, the first anno-

tator did not insert an APP node when a conjunction

was present.

PREC. RECALL F-SCORE

Overall 86.24 87.60 86.92
APP brackets only 69.79 66.37 68.04
All other brackets 86.43 87.86 87.14

Table 7: Parser results with appositions

5.1 Experiments

Our first experiment uses a pattern matching tech-

nique, simply identifying appositions by looking for

a pair of NPs separated by a comma or colon. This

rule was then expanded to include other similar con-

stituent labels: NML, UCP, ADJ, NNP, and APP itself, af-

ter noticing that errors were occurring in these cases.

Evaluating this approach, using the entire Penn

Treebank as a test set, we achieved an F-score of

95.76%, with precision 95.53% and recall 95.99%.

This result is very good for such a simplistic ap-

proach, and could be improved further by adding

some additional patterns, such as when an adverb

appears between the comma and the second NP.

Having set this very high baseline, we once again

used Bikel’s (2004) parser in an attempt to find an

improvement. This experiment includes the NML and

JJP brackets in the data, and the parser is in its orig-

inal state, without any of the alterations we made

earlier. The results are shown in Table 7.

The parser’s performance on APP brackets is al-

most 30% F-score below the pattern matching ap-

proach, and it has also dropped 1.21% counting only

the non-APP constituents. The reason for this very

low performance arises from the way that Collins’

models treats punctuation, i.e. all tokens with a POS

tag of . or :. The Collins (1997) model does not

generate punctuation at all, and later models still do

not treat punctuation the same way as other tokens.

Instead, punctuation is generated as a boolean flag

on the following constituent. As a result, the parser

cannot learn that a rule such as APP
�

NP , NP should

have high probability, because this rule is never part

of the grammar. For this reason, the parser is unable

to replicate the performance of a simple rule.

6 Conclusion

The results of this paper emphasise the strong rela-

tionship between a statistical model and the struc-

ture of the data it uses. We have demonstrated this

by changing two different constructions in the Penn

Treebank: noun modifiers, and appositions.

115

The annotation structure of the Vadas and Curran

(2007a) data has also been validated by these results,

which is actually a complement for the BioMedical

guidelines (Warner et al., 2004), on which ours were

based. It is not neccessary to explicitly bracket right-

branching constituents, and furthermore, it is harm-

ful to do so. In addition, separating the NML and NP

labels is advantageous, although our results suggest

that performance would increase if the original Tree-

bank annotations were made more consistent with

our internal NP data.

Our results also demonstrate the neccessity of

having a base-NP submodel as part of Collins’ mod-

els. This specialised case, while seeming unnecce-

sary with our new internal NP brackets, is still re-

quired to attain a high level of performance.

Instead, the error analysis in Section 3.3 shows us

the true reason why the parser’s performance on in-

ternal NP brackets is low. NML and JJP brackets are

difficult because they require specific lexical infor-

mation, i.e. the exact words must be in the train-

ing data. This is because POS tags, which are very

important when making most parsing decisions, are

uninformative here. For example, they do not help

at all when trying to determine whether a sequence

of 3 NNs is left or right-branching.

Our previous work in NP bracketing (Vadas and

Curran, 2007b) is positive evidence that this is the

correct direction, although incorporating such a sub-

model back into Collins’ model in place of the exist-

ing NP submodel, would be a further improvement.

It also remains to be seen whether the results ob-

served here would apply to other parsing models.

This work has demonstrated the large effect that

data structure can have on a standard NLP tool. It

is important that any system, not just parsers, en-

sure that they perform adequately when faced with

changing data. Otherwise, assumptions made today

will cause problems for researchers in the future.

Acknowledgements

We would like to thank Matthew Honnibal for his

annotation of the apposition data; and the anony-

mous reviewers for their helpful feedback. This

work has been supported by the Australian Research

Council under Discovery Projects DP0453131 and

DP0665973.

References
Dan Bikel. 2004. On the Parameter Space of Generative Lexi-

calized Statistical Parsing Models. Ph.D. thesis, University
of Pennsylvania.

Michael Collins. 1997. Three generative, lexicalised models for
statistical parsing. In Proceedings of the 35th Annual Meet-
ing of the Association for Computational Linguistics and 8th
Conference of the European Chapter of the Association for
Computational Linguistics, pages 16–23.

Michael Collins. 1999. Head-Driven Statistical Models for Nat-
ural Language Parsing. Ph.D. thesis, University of Pennsyl-
vania.

Joshua Goodman. 1997. Probabilistic feature grammars. In
Proceedings of the International Workshop on Parsing Tech-
nologies.

Mark Johnson. 1998. PCFG models of linguistic tree represen-
tations. Computational Linguistics, 24(4):613–632.

Dan Klein and Christopher D. Manning. 2001. Parsing with
treebank grammars: empirical bounds, theoretical models,
and the structure of the Penn Treebank. In Proceedings of
the 39th Annual Meeting on Association for Computational
Linguistics, pages 338–345. Toulouse, France.

Sandra Kübler. 2005. How do treebank annotation schemes in-
fluence parsing results? Or how not to compare apples and
oranges. In Proceedings of RANLP 2005. Borovets, Bul-
garia.

Donald W. Lee. 1952. Close apposition: An unresolved pattern.
American Speech, 27(4):268–275.

Mitchell Marcus, Beatrice Santorini, and Mary Marcinkiewicz.
1993. Building a large annotated corpus of English: The
Penn Treebank. Computational Linguistics, 19(2):313–330.

Dan Moldovan, Christine Clark, Sanda Harabagiu, and Steve
Maiorano. 2003. COGEX: A logic prover for question an-
swering. In Proceedings of HLT-NAACL 2003, pages 166–
172.

Ines Rehbein and Josef van Genabith. 2007. Treebank anno-
tation schemes and parser evaluation for German. In Pro-
ceedings of the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), pages 630–639.

Kiyoshi Sudo, Satoshi Sekine, and Ralph Grishman. 2003. An
improved extraction pattern representation model for auto-
matic IE pattern acquisition. In Proceedings of the 41st An-
nual Meeting of the Association of Computational Linguis-
tics (ACL-03), pages 224–231.

David Vadas and James R. Curran. 2007a. Adding noun phrase
structure to the Penn Treebank. In Proceedings of the 45th
Annual Meeting of the Association for Computational Lin-
guistics (ACL-07).

David Vadas and James R. Curran. 2007b. Large-scale super-
vised models for noun phrase bracketing. In Proceedings of
the 10th Conference of the Pacific Association for Computa-
tional Linguistics (PACLING-2007). Melbourne, Australia.

Colin Warner, Ann Bies, Christine Brisson, and Justin Mott.
2004. Addendum to the Penn Treebank II style bracketing
guidelines: BioMedical Treebank annotation. Technical re-
port.

116

