
Proceedings of the Australasian Language Technology Workshop 2005, pages 241–249,
Sydney, Australia, December 2005.

Automatic Utterance Segmentation in Instant Messaging Dialogue

Edward Ivanovic
Department of Computer Science and Software Engineering

University of Melbourne
edwardi@csse.unimelb.edu.au

Abstract

Instant Messaging (IM) chat sessions are
real-time, text-based conversations which
can be analyzed using dialogue-act mod-
els. Dialogue acts represent the seman-
tic information of an utterance, however,
messages must be segmented into utter-
ances before classification can take place.
We describe and compare two statistical
methods for automatic utterance segmen-
tation and dialogue-act classification in
task-based IM dialogue. It is shown that
IM messages can be automatically seg-
mented and classified to a very high ac-
curacy using statistical machine learning.

1 Introduction

Dialogue acts are a useful first level of analysis for
describing discourse structure as they represent the
illocutionary force of utterances such as assertions
and declarations. Early work on speech act theory
by Austin (1962) and Searle (1979) has been ex-
tended in dialogue acts to model the conversational
functions that utterances can perform. Table 1 shows
an example dialogue with utterance segments and
dialogue acts.

As illustrated in Table 1, some messages contain
multiple utterances and thus require segmentation
before each utterance can be classified as a dialogue
act. Once utterances are classified, the dialogue-
acts may then be used for subsequent tasks such as
machine translation (Tanaka and Yokoo, 1999), dia-
logue game detection (Levin et al., 1999), and, in the
case of spoken dialogue, speech recognition (Stol-
cke et al., 2000).

Speaker Message

Sanders [Hello Customer]CONVENTIONAL-OPENING, [thank
you for contacting MSN Shopping]THANKING .
[This is Sanders and I look forward to assist-
ing you today]STATEMENT

Sanders [How are you doing today?]OPEN-QUESTION

Customer [good]STATEMENT, [thanks]THANKING

Sanders [How may I help you today?]OPEN-QUESTION

Table 1: An example of the beginning of a dia-
logue in our corpus showing utterance boundaries
and dialogue-act tags in superscript.

Instant Messaging (IM) consists of two or more
people typing messages to each other in real time
on a line-by-line basis. Although IM dialogue can
take place with a group of people simultaneously
writing to each other, for the purposes of this study
we assume only two-party dialogue. As described
in Ivanovic (2005), sequences of words are grouped
into three levels: the first level is aTurn, consisting
of at least oneMessage, which consists of at least
oneUtterance, defined as follows:
Turn: A dialogue participant normally writes one or
more message then waits for the other participant to
respond, hence takingturns in writing messages.
Message:A message is defined as a group of words
that are sent from one dialogue participant to the
other participant as a single unit. This is usually
achieved by typing a message and pressing the En-
ter key or a ‘Send’ button on the client program. A
single turn can span multiple messages.
Utterance: An utterance can be thought of as one
complete semantic unit with respect to dialogue acts.
This can be a complete sentence or as short as an
emoticon (e.g. “:-)” to smile). Messages contain one
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or more utterances. Although it is possible to send a
message mid-utterance, resulting in utterances span-
ning messages, so such instances occur in our cor-
pus, which our model assumes. Example utterances,
enclosed within brackets, are shown in Table 1.

Most utterance segmentation research to date
has focussed on transcribed speech. The aim of
speech segmentation, however, is different to that re-
quired by dialogue act classification. That is, large-
vocabulary speech recognisers segment speech into
acousticsegments for more efficient processing, us-
ing criteria such as non-speech intervals and turn
boundaries in dialogue. These methods are not ap-
propriate for IM utterance segmentation because the
acoustic segmentation methods rely on the recorded
waveform of speech, which does not exist in IM di-
alogue.

We show that utterance segmentation for dialogue
act classification requires very different criteria to
transcribed speech segmentation. Our methods for
dialogue act utterance segmentation are based on
linguistically and statistically motivated approaches.

The rest of this paper is organised as follows. The
data collection and dialogue act tag set are described
in Section 2. The methods and language models
used in our experiment are explained in Section 3.
Evaluation techniques we use are in Section 4. Our
experimental results and discussion are in Section 5,
with the conclusions and future work in Section 6.

2 Data and Dialogue Act Tag Set

Our data was collected in previous work (Ivanovic,
2005) from an online IM-based support service and
consisted of nine chat sessions, totalling 550 utter-
ances, 6,500 words, with a mean message length of
10 words. The chat sessions were manually seg-
mented into utterances by one person and used as a
gold standard. These utterances were then annotated
by three people

Table 2 shows the dialogue act tag set we use,
which was also taken from previous work as de-
scribed in Ivanovic (2005). The tag set was cho-
sen by manually labelling our corpus using tags that
seemed appropriate from the 42 tags used by Stol-
cke et al. (2000), which in turn were based on the
Dialog Act Markup in Several Layers (DAMSL) tag
set (Core and Allen, 1997).

Tag Example %

STATEMENT I am sending you the page now 36.0

THANKING Thank you for contacting us 14.7

YES-NO-
QUESTION

Did you receive the page? 13.9

RESPONSE-ACK Sure 7.2

REQUEST Please let me know how I can
assist

5.9

OPEN-
QUESTION

how do I use the international
version?

5.3

YES-ANSWER yes, yeah 5.1

CONVENTIONAL-
CLOSING

Bye Bye 2.9

NO-ANSWER no, nope 2.5

CONVENTIONAL-
OPENING

Hello Customer 2.3

EXPRESSIVE haha, :-), grr 2.3

DOWNPLAYER my pleasure 1.9

Table 2: The 12 dialogue act labels with examples
and frequencies given as percentages of the total
number of utterances in our corpus.

A Kappa analysis used to compare inter-annotator
agreement normalised for chance (Siegel and Castel-
lan, 1988), resulted in a value of 0.87 with 89%
agreement (Ivanovic, 2005). A Kappa statistic of
0.8 and above is considered a satisfactory indication
that our corpus can be labelled reliability using our
tag set (Carletta, 1996).

A complete list of the 12 dialogue acts we used is
shown in Table 2 along with examples and the fre-
quency of each dialogue act in our corpus.

3 Methods

Our first goal was to determine which features ob-
tained from IM transcripts would be useful in detect-
ing utterance segments within messages. The data
available from IM chat transcripts are thespeaker,
message text,andtime stampof each message. Un-
like regular written prose, IM chats are often very
informal—omitting usual punctuation such as com-
mas, periods, question marks, and initial capital let-
ters for proper names and new sentences. Spelling
mistakes, acronyms for common phrases, and un-
grammatical messages are also quite common.

The observation that utterances in our data do not
cross message boundaries allows us to focus on seg-
menting one message at a time. We use two ap-
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A: [ INTJ hello UH ] [NP customerNN ] , O <s> [V P thankV B] [NP you PRP ] [PP for IN ] [V P

contactV BG] [NP Msn NNP ShoppingNNP ] . O <s> [NP this DT ] [V P beV BZ ] [NP SandersNNP ] [O

andCC ] [NP I PRP ] [V P look V BP ] [ADV P forwardRB] [PP to TO] [V P assistV BG] [NP you PRP ] [NP

todayNN ] . O

A: [ADV P how WRB] [O beV BP ] [NP you PRP ] [V P do V BG] [NP todayNN ] ? O

B: [ADJP goodJJ ] , O <s> [NP thanksNNS ]

Figure 1: Sample tagged and chunked data.

proaches to segment the messages: Hidden Markov
Models (HMMs) and a probabilistic model based on
parse trees. We discuss each of these in turn.

3.1 HMM Method

In the absence of reliable punctuation cues, we
looked at approaches based on the available lexi-
cal information. One such method was to use an
HMM to find the most likely segment boundaries.
We experimented with three versions of the HMM
approach, based on sequences of: (i) lemmas, (ii)
part of speech tags, and (iii) head words of chunks.

The rationale behind using chunks is that the
number of possible segments is reduced since ut-
terance boundaries do not lie within chunks. The
data was assigned POS tags and segmented into
chunks via the FNTBL Toolkit (Ngai and Flo-
rian, 2001), which is an efficient implementation
of Eric Brill’s Transformation-based learning algo-
rithm (Brill, 1995). Lemmatisation on our corpus
was performed using the morphological tools de-
scribed in Minnen et al. (2001).

Figure 1 illustrates some characteristics of the
data. Utterance boundaries are marked by<s> tags,
chunk boundaries are enclosed within brackets, and
words’ POS tags are shown in subscript after the
word. The actual chunks in the data use IOB tags
similar to that described in Ramshaw and Marcus
(1995).

We first trained ann-gram statistical language
model with add-one smoothing and Katz backoff
(Katz, 1987) to hypothesize the most probable lo-
cations of utterance boundaries for each individual
message. The resulting segmentations were then
evaluated using the WindowDiff metric as described
in Section 4.

Elements used to represent the segments were
lemmas, POS tags, and chunks. Segment beginnings

in our training data were marked with a<s> tag.
This allowed each element to be in one of two states:
S or NO-S depending on whether it had a<s> tag
before it. We build two probability distributionsPS

andPNO−S representing the probability that token
tk is at the beginning of a segment or not, respec-
tively. Using this state information permits us to use
an HMM with the following forward computation
for the likelihoods of the states at each positionk as
described by Stolcke and Shriberg (1996):

PNO−S(t1...tk) = PNO−S(t1...tk−1)×
p(tk|tk−2tk−1)

+PS(t1...tk−1)×
p(tk|<s> tk−1)

PS(t1...tk) = PNO−S(t1...tk−1)×
p(<s> |tk−2tk−1)p(tk|<s> )

+PS(t1...tk−1)×
p(<s> |<s> tk−1)p(tk|<s> )

wheret is a lemma, POS or chunk token. A corre-
sponding Viterbi algorithm is then used to find the
most likely sequence of S and NO-S states given the
lemmatised words. Note that this model treats seg-
ment marks,<s> , as tokens.

3.2 Parse Tree Method

Parse trees generally contain nodes of clauses as
illustrated in Figure 2. We assume that utterance
boundaries only occur at major syntactic boundaries.
This is similar in principle to the use of chunks as
described in Section 3.1, where we hypothesise that
a segment boundary exists before each token. The
notion of a token, however, changes from represent-
ing chunks to sub-trees within a parse tree. Since
a token in this context represents multiple words,
and utterance segments may only occur in between
tokens, this method significantly reduces the possi-
bility of obtaining false-positive segment boundaries
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Figure 2: Parse tree of a message showing utter-
ances separated into sub-trees as generated by RASP
(Briscoe and Carroll, 2002).

when compared with using word or chunk tokens as-
suming correct parse trees. If the parse trees are not
correct, however, this technique will have the oppo-
site effect. This is discussed in more detail in Sec-
tion 5.3.

To produce the parse trees, we use the RASP (Ro-
bust Accurate Statistical Parsing) parser described
in Briscoe and Carroll (2002). RASP is designed
to be domain-independent in order to handle text
from different genres. Given that our data comes
from instant messaging, which exhibits less pre-
dictable prose than that typically found in newspa-
pers, we chose RASP over other parsers such as
Collins (1999) and Charniak (2000) that are opti-
mised on the Wall Street Journal treebank.

Utterance segments in our data always occur
within a maximum depth of 2 nodes from the root of
the parse tree. Using this depth limit, we first build
a table of possible “cuts” through the tree. These
cuts, or proper analyses as described in Chomsky
(1965), contain every combination of sub-trees, as
illustrated in Figure 3, resulting in a sequenceC of
nodes:

C = t1, t2, t3, . . . , th (1)

where each combinationti is a sequence of tree
nodes such that:

ti = t1, t2, t3, . . . , tn (2)

where the leaves of each tree nodeti represent a pos-
sible utterance.

We then calculate the most likely dialogue act for
the leaves (words) within each node, independently

C tj,1 tj,2 tj,3

⇒
t1 A1,1

t2 B2,1 C2,2

t3 B3,1 D3,2 E3,3

Figure 3: Proper analyses,C3
1 from a parse tree.

in the combination table. The result and its corre-
sponding dialogue-act are stored with the nodeti.
Next, we calculate the probability of a correct se-
quence of utterances based on the product of the
dialogue-act classification probabilities, using the
following formulae:

〈t∗,d∗〉 = arg max
〈t∈C,d〉

∏

ti∈t

P̂ (di|ti, di−1)

P̂ (di|ti, di−1) = P (di|di−1)
∏

v∈leaves(ti)

P (v|di)

wheret∗ is the best node combination (or segments),
C is the set of proper analyses,P (di|ti) is the prob-
ability of nodeti ∈ t being dialogue-actd based on
its leaves (words),di−1 is the previously assigned
dialogue-act (using bigrams), andv is a word in
nodeti.

Using this method has the effect of evaluating
the classification and segmentation tasks at the same
time, taking the most probable combination. Al-
gorithm 1 shows the process used to find the best
proper analysis inC. The classify method re-
turns the highest probability of all dialogue acts
given the words in noden using the naive Bayes
method. It also returns the corresponding dialogue
act which is then stored with the respective noden.

Importantly, the naive Bayes algorithm uses a
bag-of-words as its features, taking the product of
each word’s probability of being in any given dia-
logue act. This allows the product in line 6 of Al-
gorithm 1 to be used as a ranking score amongst the
proper analyses even though the number of nodes
n in t may vary withinC. If a different classifica-
tion algorithm were used, then line 6 may have to be
modified to preserve mathematical tractability.
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Algorithm 1 Find best utterance segmentationsti ∈
C. Theclassify method also returns the best di-
alogue acts and probabilities which are stored with
their nodesn.

1: maxp ← 0 {stores the best probability}
2: maxt ← None{best tree node}
3: for all t in C do
4: p ← 1
5: for all n in t do
6: p ← p×classify(leaves(n))
7: end for
8: if p > maxp then
9: maxp ← p

10: maxt ← t
11: end if
12: end for

4 Evaluation

The segmentation algorithms described in Section 3
were evaluated via 9-fold cross-validation where
eight of the chat sessions in our corpus were used for
training and one for testing. This process is repeated
for all dialogues and the mean result is presented.

In this section, we first discuss why the standard
information retrieval evaluation metrics of recall and
precision are not appropriate for this type of seg-
mentation, and then discuss the WindowDiff metric,
which is used instead.

4.1 Using the Recall and Precision Metrics for
Segmentation

The standard information retrieval metrics of recall
and precision are not well-suited to evaluating seg-
mentation tasks. Recall is the ratio of correctly hy-
pothesised segment boundaries to the total number
of actual boundaries. Precision is the ratio of correct
boundaries detected to all hypothesised boundaries.

There are two main problems with using these
metrics for segmentation tasks: the first is re-
lated to the inherently subjective nature of seg-
mentation. An example is with the message
“ok - that’s great, thanks” in which “ok - that’s
great” could be segmented and tagged as a sin-
gle ACKNOWLEDGEMENT or as the two utterances:
“[ok] ACKNOWLEDGEMENT - [that’s great]STATEMENT”.
Deciding which segmentation should be considered
correct depends largely on how the utterances will

be used, that is, the downstream task. The traditional
recall and precision metrics will regard the alterna-
tive segmentation as an error.

Similarly, if our corpus has a message that is
manually segmented into two or more adjacent ut-
terances with the same dialogue-act, the system
should not necessarily be penalised for regard-
ing the span of text as one segment. For ex-
ample, “[Goodbye]CONVENTIONAL-CLOSING and [take
care]CONVENTIONAL-CLOSING” could just be marked as
one utterance.

The second problem with using recall and preci-
sion to evaluate segmentation tasks is the question of
how to handle near-boundary misses, that is, a false-
positive that occurs near a true boundary. Using re-
call and precision in the way described will penalise
a system equally regardless of whether a hypothe-
sised segment boundary is off by one or ten words.

4.2 The WindowDiff Metric

The manually segmented data is used as a gold stan-
dard with which to compare hypothesised segmen-
tations using the WindowDiff metric. The Window-
Diff metric, proposed by Pevzner and Hearst (2002),
aims to improve segmentation evaluation by reward-
ing near-misses.

WindowDiff works by choosing a window size
k that is typically equal to half of the average seg-
ment length in a corpus. Thisk-sized window then
slides over the hypothesised segmentation data and
compares segment and non-segment marks with the
reference data. If the number of hypothesised and
reference segments within the window size differ, a
counter is incremented and the window continues to
the next position. The final score is then divided by
the number of scans performed. A perfect system
would therefore receive a zero score.

In most segmentation tasks, segment lengths are
uniformly distributed, so using a fixed value fork is
appropriate. However, because utterance lengths in
our data vary considerably, as shown in Figure 4, we
evaluate for different values ofk. We adjustk from
1 to 20 for each message, taking the mean result for
each value ofk. The maximum allowable value ofk
is the message length on a per-message basis. This
technique provides a fair evaluation given the varied
utterance lengths.

Another question for our experiment is whether
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allowing any deviation from our reference seg-
mented data is acceptable, such as inserting a bound-
ary somewhere near an actual boundary. Depending
on where a boundary is inserted, this may result in
two incomplete utterances as in example (1) below:

(1) a. Ref: [thanks] [you’ve been very help-
ful]

b. Hyp: [thanks you’ve] [been very help-
ful]

The segments in (1) differ only by one word, but
the resulting utterances in (1-b) are confusing, espe-
cially when taken in isolation. In this case, we would
not want to allow any deviation from the reference
data. However, there are cases where a near-miss is
acceptable, such as in (2):

(2) a. Ref: [Thank you for waiting], Cus-
tomer. [I have found a page that lists a
wide variety of Rock Climbing Shoes]

b. Hyp: [Thank you for waiting, Cus-
tomer]. [I have found a page that lists a
wide variety of Rock Climbing Shoes]

Here, the hypothesised segmentation (2-b) is just as
acceptable as the reference (2-a).

The difference between examples (1) and (2) is
that (2-b) has maintained the clause boundaries. The
wordCustomerin (2-a) is not part of either segment,
so including it in the utterance does not affect the
adjacent utterance. Since an utterance is a complete
phrase, this is the only way a near-miss may still
be considered correct. Some other exceptions exist
involving single-word utterances which will not be
considered here.

5 Experimental Results and Discussion

The WindowDiff results for the various models and
window sizes are shown in Figure 5 along with the
baseline WindowDiff scores. A lower score indi-
cates higher accuracy. The best result was achieved
by the parse tree method. The worst result was given
by the HMM POS tag model, but it still exceeded the
baseline.

The relative difference between the models varies
little as the window size changes. The Window-
Diff score begins to taper off ask increases past 20
words, which is at approximately the 90th percentile

Figure 4: Frequency distribution of utterance length
in words. The mean length is 7.6 words and the me-
dian is 6 words.

of utterance lengths in our corpus. This plateau is
due to window lengths having no effect on shorter
messages as a result of the adjustment we make tok
whenk is greater than the message length.

The better evaluation scores for small values of
k are simply due to the way the WindowDiff al-
gorithm compares segments within a window. An
equal penalty is applied regardless of whether there
are five or two segments within a window that should
only contain one. Therefore, a window length span-
ning the entire message will at most return only
one penalty if the hypothesised segments differ at
all from the reference segments. Since the window
spans the entire message, only one comparison is
performed which results in the equivalent of a 100%
error rate. Conversely, whenk is small, the num-
ber of unequal windows between the reference and
hypothesised segmentations will also be small since
we have so few false positives. At the same time,
the number of comparisons will be high, leading to
a low WindowDiff score.

A perfect score of 0 is never achieved since there
are always some misaligned segments. We never see
a score of 1 since many of the single-utterance mes-
sages are accurately detected, as discussed in Sec-
tion 5.1 below. Likewise, none of the models ap-
proach the baseline as the window size increases,
which indicates that some of the multi-utterance
messages are also accurately detected.

Although no individual value ofk can be used to
judge performance because of the varying segment
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Figure 5: WindowDiff results of various models used and varying window sizek from 1 to 20. A lower
score indicates better accuracy.

(utterance) lengths in our corpus, we can confidently
gauge the performance of each method relative to
each other method since their respective rankings re-
main constant for all values ofk.

5.1 Baseline

An analysis of our data revealed that messages con-
tain up to three utterances. Of these messages, 60%
contain only one utterance, 20% contain two utter-
ances, and the remaining 20% consist of three utter-
ances.

The baseline is calculated by assuming that each
message contains only one utterance since this is the
majority class.

5.2 HMM Results

We used three types of features with the HMM: lem-
mas, POS tags, and the head word of chunked data.
The POS tag model performs the worst, whereas the
lemma model is the best of the HMM models. This
indicates that cue words play a major part in deter-
mining utterance segment boundaries. Replacing the
words with their respective POS tags loses this infor-
mation.

Using POS tags can sometimes help overcome
data sparseness problems as it has the effect of
generalising words. However, in this case it over-

generalises, resulting in poorer performance.
The rationale behind using chunks is that it re-

duces the number of possible boundaries as we hy-
pothesise boundaries between chunks rather than
words. Since utterance boundaries do not lie within
chunks, this may have increased the probability of
correct segment boundary detection. However, the
results show that the HMM benefits from using all
words rather than only the chunks’ head words.

The main types of errors produced by the HMM
are false positives based on words that commonly
occur at the start of an utterance, such as “what”,
occurring mid-sentences as in (3):

(3) but I’m not sure what to get her

The reference data has this as one utterance, but the
HMM detects a false positive starting at “what”.

5.3 Parse Tree Results

The parse tree method gives the best results. A qual-
itative evaluation of the dialogue act classifications
assigned to detected utterances gave an accuracy of
84%. The baseline for the dialogue act classification
task was 36%, which was the majority class being
STATEMENT.

The most common type of error the parse tree
method makes is to separate words near the root of
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Figure 6: Erroneous parse tree of sentence (4) as
produced by RASP.

a parse tree away from a deeper right node. Figure 6
shows a parse tree produced by RASP for (4) below:

(4) Thank you for approaching us. I would
surely try to help you today

The parse tree for (4) is problematic. The
first word, “thank”, is detached from the S node
that contains the rest of the sentence. Our
model treats (4) as a sequence of word to-
kens W = w1, w2, w3, ..., w13 and finds that
P (THANKING |w1) × P (STATEMENT|W 13

2 ) >
P (d|W ), whered is any dialogue act. In this in-
stance, RASP failed to segment the two sentences
in this message, which prevented our model from
evaluating the correct utterances. This illustrates the
high dependency our model has on the quality of the
generated parse trees.

Another type of error is that the model does not
detect any segmentations within a message where
there ought to be. An instance of this is in (5) be-
low:

(5) right, but I do not know of any and do not
speak/read french

The reference data has the word “right” segmented
and tagged asRESPONSE-ACK and the rest of the
message as oneSTATEMENT. However, our model
does not evaluate that possibility as the correspond-
ing parse tree in Figure 7 does not combine the
words as would be expected.
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,

S
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S
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VP
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Figure 7: Parse tree of sentence (5) as produced by
RASP.

6 Conclusion and Future Work

Finding utterance boundaries in IM dialogue is a
critical step for aiding utterance classification and
downstream language processing modules such as
dialogue response planning. We have shown that the
parse trees model obtains the best results. Of the
HMM models, the HMM over lemmas in messages
performs better than using chunked data and POS-
tags, which lose too much information and impede
accuracy.

The parse tree method performed best overall and
has the advantage of combining both segmentation
and classification tasks in one step to give the op-
timal combined result. It is based on the linguistic
intuition that utterances are complete constituents,
which are modelled well by parse trees. However,
this heavy reliance on the quality of the parse trees
is also a weakness. Most of the errors obtained us-
ing the parse tree method may be attributed to poor,
or at least unexpected, parse trees being produced.
That notwithstanding, the preliminary results using
the RASP parser are very encouraging.

In future work, we intend to focus more on pars-
ing IM messages, taking into account some of its
distinct characteristics. Some obvious steps to pro-
duce better parse trees are to perform spelling cor-
rections and expand acronyms, such as “idk” for “I
don’t know”. Existing parsers will thus be able to
produce more accurate parse trees, which will in turn
result in higher segmentation accuracy.

We will also investigate the subjectiveness of ut-
terance segmentation by performing Kappa (Siegel
and Castellan, 1988) analysis on our segmentation
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boundaries. The Kappa analysis will give an indica-
tion as to the meaningful upper bounds of the per-
formance of our system.
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