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Abstract

Previous systems that automatically tag text with
FrameNet labels have been trained from the
FrameNet example data, as there is no FrameNet
annotated corpus. The FrameNet data is systemat-
ically biased by the criteria for the examples’ se-
lection, as annotators attempt to select simple sen-
tences that include the target word.

Instead of using the FrameNet examples, we train
a maximum entropy model classifier to identify verb
frames on text from the Penn Treebank. We use ex-
amples of verbs with only one entry in FrameNet
as training data, and evaluate the system on human
annotated text from the Wall Street Journal. We ac-
curately identify the frame used by 76% of finite
verbs.

We also investigate how well the system performs
on verbs it has not encountered before. This task
examines the feasibility of using the system to auto-
matically extend the coverage of FrameNet by clas-
sifying verbs with no FrameNet entries. The classi-
fier accurately assigns a frame to 55% of instances
of verbs it has not been trained on.

1 Introduction

FrameNet (Ruppenhofer et al., 2005) is a lexical se-
mantic database that categorises words into frames,
and gives extensive examples of their use. A frame
records the semantic type of a predicate and the se-
mantic roles of its arguments. Usually, the predicate
will be a verb, and its roles will be realised by con-
stituents of its clause.

Recently, Senseval-3 (Litowski, 2004) used
FrameNet as the basis of a semantic role labelling
shared task. Participants were asked to replicate the
role labelling of frame elements in the FrameNet
example data given the frame. However, a system
which is trained and evaluated on the FrameNet ex-
amples may not perform comparably on other text.
FrameNet examples are selected by the annotators
to illustrate the semantic and syntactic combinatory
possibilities of each word, with minimal confusion

from irrelevant performance variables and com-
plicated syntactic constructions. They are there-
fore a systematically skewed sample, with much of
the complexity of natural text under-represented or
missing entirely.

The problem is that there is currently no
FrameNet annotated corpus — only four manually
annotated Wall Street Journal texts, recently re-
leased on the FrameNet website. There is, how-
ever, still a way to train a system for a subset of
the FrameNet annotation task on real text without
one. Frame selection is often unambiguous given
a particular verb: currently, 73% of verbs entered
in FrameNet are associated with only one frame.
These verbs head 40% of the finite clauses in the
Penn Treebank (Marcus et al., 1993).

The verb senses associated with a particu-
lar FrameNet frame share similar semantics and
argument structures. For instance, theActiv-
ity finish frame includes the unambiguous verbsfin-
ishandcomplete, and the ambiguous verbconclude,
which is also associated with theComing to believe
frame.

Clearly, these two types ofconcludeare different
word senses, and theActivity finish sense should
be closer to the otherActivity finish verbs than
the Coming to believe sense in a sense taxonomy
like WordNet (Fellbaum, 1998). The two frames
also have different argument structures: theActiv-
ity finish verbs are all transitive, and would usually
require a conscious agent and an event noun object.
TheComing to believe frame verbs, such asascer-
tain and deduce, expect a sentiential complement
instead of a noun phrase object. Such patterns can
be learnt even if the learner has access to examples
using only a few verbs of each frame.

We train a maximum entropy model on the un-
ambiguous clauses in the Penn Treebank, and eval-
uate it on two tasks. First, the FrameNet website
has recently added four human annotated texts from
the Wall Street Journal, which we use as test data.
Second, we hold out the instances of one quarter
of the verbs in FrameNet, in order to evaluate how
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well the classifier can deal with unknown words.
FrameNet’s lexical coverage is currently quite low,
so a system which can accurately assign frames to
currently unclassified words could be used to auto-
matically extend FrameNet’s vocabulary.

2 Labelling FrameNet predicates
FrameNet is a lexical semantic database that records
the semantic type of a predicate and the seman-
tic roles of its arguments, as well as how they are
realised syntactically. The predicates are usually
verbs, but can also be nouns, adjectives, adverbs or
prepositions. The database is organised intoframes,
which group predicates that share similar semantics
and argument structures.

Full FrameNet annotation involves labelling each
predicate with a frame, and then allocating role la-
bels to the constituents that realise its frame ele-
ments. Verb frame elements are usually realised by
direct arguments of the predicate, such as its subject
and object.

The seminal work on automatic FrameNet an-
notation, Gildea and Jurafsky (2002), and the
Senseval-3 task (Litowski, 2004) after it, both con-
centrate on labelling frame elements given a frame
label. This semantic role labelling task is a sequence
tagging problem, a little like chunk tagging, in terms
of its sequantiality and boundary detection.

We are not aware of any other attempts to identify
frame labels, rather than frame elements. This prob-
lem is rather different, as there will be exactly one
label per frame. We therefore assign labels to each
clause independently, based on the semantics of the
verb and the semantics of its syntactic arguments.
Section 5 discusses how we capture this informa-
tion in our features.

3 FrameNet and WordNet
The current problem with using FrameNet as the ba-
sis of a semantic parser is its coverage. The latest
release of FrameNet, 1.2, has approximately 6,765
lexical entries, covering only 64% of tokens (and
26% of token types) in the Penn Treebank. An-
other potential issue is that annotation is proceed-
ing frame by frame, rather than word by word. This
means that there is no guarantee that existing lexi-
cal entries are complete. For instance, the verboc-
cur belongs only to theEvent frame; its cognition
sense, as in‘the idea never occurred to me’, is un-
documented.

Both of the problems noted above could be cor-
rected — or at least, alleviated — by mapping
FrameNet entries to WordNet senses. WordNet
(Fellbaum, 1998) is a lexical database that focuses

on semantic relations between synonym sets, such
as hyponymy and meronymy, and exhaustively cat-
aloguing all senses of its entries. Unlike FrameNet,
it does not include much detail on argument struc-
ture or type. The two resources are therefore com-
plementary.

Shi and Mihalcea (2005) argue that mapping
the lexical entries in FrameNet to WordNet senses
via VerbNet (Kipper et al., 2000) is a promising
approach to connecting these complementary re-
sources. They map the 2,393 verb intersection of
these three resources, and additionally map another
839 verbs by generalising with WordNet synonymy
and hyponymy. This is a relatively small subset of
the 11,488 verbs entered in WordNet, and only in-
creases the size of FrameNet a little.

However, the mapping does reduce frame ambi-
guity a little in WordNet sense disambiguated text
— of which there is a reasonably sized corpus. We
find that using the mapping Shi and Mihalcea pub-
lish allows us to increase the diversity of verbs in
our training data, which consists of examples of un-
ambiguous verbs, thereby increasing performance.

4 Training Data

We use examples of a limited set of verbs — the
unambiguous ones — to represent each frame. This
allows us to train the system without annotated data.
This approximation rests on several assumptions,
none of which are quite correct. We take a few sim-
ple steps to alleviate the problems they introduce.

First, we assume that the similarities between the
verbs in each frame are strong enough that an ex-
ample of one verb is a reasonable surrogate for an
example of a different verb. In the best case sce-
nario, the two verb senses will have identical se-
mantic and syntactic profiles: those senses will be
interchangeable in all contexts, but one verb will be
polysemous, and the other monosemous.

Second, we assume that using only the unam-
biguous instances will not radically change the dis-
tribution of the classes in the training data. In
the worst case scenario, some frames will have no
monosemous verbs from which to learn, so some
of the classes will be missing entirely in the train-
ing data. The distribution may also be skewed
when a frame has a particularly common unam-
biguous verb, over-representing it significantly. For
instance, the verbbe is associated with only one
frame,Performers and roles. The problem is exac-
erbated by the fact that polysemy is correlated with
the frequency of the word, so most other frequent
verbs will be ambiguous.

Of course,be is not actually monosemous: in
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Figure 1: Training data available with and without Shi & Mihalcea’s mapping

WordNet, it has thirteen senses. We assume that the
lexical entries in FrameNet are complete; that when
a verb has only one frame associated with it, there
is only one frame it can use. In reality, FrameNet is
a work in progress, and it is proceeding frame-by-
frame, rather than word-by-word. The annotators
add a frame, populate it with some lexemes, find
examples for them, and describe its semantics and
relations to other frames. They do not ensure that
a given word is associated with every frame it can
use.

Of the three assumptions, this last is the most
troubling — as it makes it difficult to know what the
answer is, not just how it can be predicted. We alle-
viate the other two problems with two measures that
are both designed to increase the variety of verbs we
can train from.

First, we use the FrameNet-WordNet mapping re-
leased by Shi and Mihalcea (2005) and use the Sem-
Cor corpus (Miller et al., 1993), which is a Word-
Net sense disambiguated portion of the Brown cor-
pus (Francis, 1964) as part of our training data. So
our training data includes the WordNet sense of the
verb, and Shi and Mihalcea’s map translates that
into a single frame label. We can then use instances
of that verb as training data, where before it may
have been ambiguous. Figure 1 shows how many
clauses in the Penn Treebank are available for train-
ing for each class with and without Shi and Mihal-
cea’s mapping.

The second way we try to correct for the under-

representation of classes in the training data is to
use an iterative bootstrapping system. We first train
a classifier on the unambiguous instances, and then
use it to predict a class for those whose frame we
are unsure of. When the predicted class is within
the possibilities listed in FrameNet (if there are
any), and the confidence of the prediction is above a
thresholdC, we add the instance to the training data
for the next iteration. Figure 2 shows how many
instances are drawn into the training data at each it-
eration whenC is set to 0.4. Clearly, the number
levels off, so we limit it to six iterations.

5 Feature extraction and selection
A frame is defined by the semantic type of its
predicate and the semantic roles of its arguments.
FrameNet does not allow contextual elements to re-
alise semantic roles. Instead, semantic roles must
be realised by a syntactically local constituent, or
be considered missing (“null instantiation”).

The classifier therefore must have access to some
representation of the semantic type of each con-
stituent in the predicate’s clause, as some of these
will realise the semantic roles which partly define
the frame. Representing the semantics of a whole
constituent is difficult, so we restrict ourselves to
using head words. For instance, if the subject of a
clause is‘those two old electric trains’, we will at-
tempt to represent the semantics of‘trains’ . Some-
times, the grammatical head is not the semantic
head, particularly in‘of ’ expressions like‘a glass
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Figure 2: Training instances available per iteration (bootstrapping process)

of wine’. This type of construction is difficult to re-
liably distinguish from uses of‘of ’ like ‘a glass of
the finest crystal’, so we simply accept the imprecis-
sion. We do, however, consider the head of prepo-
sitional phrases to be the head of their component
noun phrase, instead of the preposition. We attempt
to model the semantics of the following clause con-
stituents:

• Main verb

• Logical subject

• Logical object

• Indirect object

• Prepositional phrases

• Adverbial phrases

We represent the semantics of a word using its
WordNet synset and hypernyms. The feature space
consists of a list of WordNet synsets, whose value
is initially the probability that a given constituent’s
head is either a member or hyponym of that synset.

Probabilities allow us to use non-word sense dis-
ambiguated data, by distributing the probability (or
in Bayesian terms, belief) mass amongst the possi-
ble senses of the word. It would be possible to use
a sophisticated word sense disambiguation system
to arrive at these belief scores, but we use a naive
method which simply weights the distribution by

the senses’ frequency ranks, such that the most fre-
quent sense has twice the belief strength of the least
frequent sense. Hypernym belief scores are the sum
of the belief scores of its hyponymys, as shown in
figure 3. So even if a word is sense-ambiguous, it
can have an unambiguous synset amongst its hyper-
nyms, if its senses have one in common. The classi-
fier will therefore favour features corresponding to
more general synsets, because they will usually oc-
cur more frequently and have higher belief scores.

Each constituent type listed above controls its
own section of the feature space, as shown in table
1. There are 152,059 unique synsets in WordNet,
but 335,928 possible features in our feature space.
This is because the same noun synset might be four
distinct features, depending on whether it occurs in
the logical subject, logical object, indirect object or
a prepositional phrase. This replication preserves
the distinction between the different grammatical
functions, so that a clause with an animate subject
and an inanimate object is represented differently
from a clause with an inanimate subject and an an-
imate patient. Compare‘he considered his options’
with ‘the current swept him away’.

Of course, in the examples above, the word‘he’
will have no entry in WordNet at all. Animacy is
one of the most important lexical semantic distinc-
tions, and animate constituents are realised most
commonly by pronouns and proper nouns. To cor-
rect this problem, we supply the “person” synset for
variants of‘he’ and‘she’, as well as‘who’. We con-
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Syntactic Role Synset Count
Verb 13,508
Log. Subj. 79,689
Dir. Obj. 79,689
Ind. Obj. 79,689
PP Head 79,689
Adverb 3,664
Total 335,928

Table 1: Potential Feature Space Size

sider proper nouns, as distinguished by their Tree-
bank part of speech, to be polysemous: it is not im-
mediately obvious whether they stand for a person,
organisation, country, etc. We therefore supply a
small group of general synsets (“person”, “organi-
sation”, “place”) to represent them.

We reduce the size and complexity of our feature
space by discretising each feature into a boolean
value, and selecting features with the topN infor-
mation gain. The maximum entropy implementa-
tion we are using, Zhang Le’s Maxent Toolkit (Le,
2005), does allow real valued features, but they are
nevertheless unideal with our data. Real valued fea-
tures with non-uniform distributions may interfere
with the parameter estimation algorithm, so we dis-
cretise them into boolean features at the threshold
which maximises their information gain. We then
use the information gain scores to rank the features
and select theN best, thereby reducing the feature
space.

6 Evaluating on unseen verbs

We paid particular attention to how the system
would perform on verbs it had not been trained
with, to explore how well it can deal with unknown
words. Paying individual attention to unknown
words is a familiar strategy in tagging problems, but
to our knowledge has not been applied to FrameNet
labelling tasks.

There are two reasons why unknown words are
even more important for a FrameNet tagger than,
for example, a part-of-speech tagger. First, the vo-
cabulary of FrameNet is quite small, so a tagger
running on natural text will encounter plenty of
them. In the Penn Treebank (Marcus et al., 1993),
only 64% of tokens and 26% of token types have
an entry in FrameNet. Second, assigning labels to
previously unclassified words could be used to ex-
tend FrameNet’s vocabulary semi-automatically, by
manually correcting the tagger’s suggestions.

To evaluate performance on unknown verbs, we
set aside instances of 25% of the verbs in the train-
ing set. This is a tough evaluation measure. First,

Unseen verbs WSJ Data
SemCor Shi 47% 62%
PTB Shi 55% 76%
SemCor no Shi 44% 52%
PTB no Shi 48% 67%
Baseline 27% 40%

Table 2: Results

we already struggle to represent each frame ade-
quately, as section 4 discusses. This problem is ex-
acerbated by holding out a set of the verbs, since
the test set may contain a disproportionate amount
of the verbs associated with a particular frame, leav-
ing few or no instances of that frame in the training
data. Stratifying the held out set so that it contains
roughly 25% of the instances, 25% of the verbs,
and maintains a similar distribution of frames to the
training data has proven difficult.

To alleviate the problem, we allow the early iter-
ations of the classifier access to the test data, only
removing it for the final classifier. This means that
the final classifier has not had access to the test data,
but the system has the opportunity to draw in exam-
ples similar to it from the unclassified data during
the bootstrapping process.

For instance, if all of the unambiguous examples
of the Performers and roles frame use the verbbe,
and be is a test data verb, the training data will
contain no examples from that class, and conse-
quently get every example ofbe wrong. So we at
first allow the system to train on examples ofbe, so
that it can classify ambiguous examples ofPerform-
ers and roles, such as instances of the verbplay. Fi-
nally, instances ofbeare removed before the final it-
eration, so that the final classifier has some instances
of Performers and roles, from verbs likeplay, but
has not been trained on instances ofbe. The classi-
fiers for the earlier iterations just need to be as accu-
rate as possible. We do not need to evaluate them, so
we can provide them the test data to build a better
model. However, we do need to evaluate the final
classifier, so we cannot train it with the test data.

7 Results

Table 2 presents results from different datasets on
our two classification tasks, with and without us-
ing the mapping described by Shi and Mihalcea
(2005). The “WSJ Data” task evaluates our clas-
sifier on four human annotated Wall Street Journal
texts made available on the FrameNet website. This
quantity of text is obviously insufficient for training,
but does make a good test set, after the texts have
been set aside from the rest of the WSJ training data.
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Figure 3: Belief propagation to hypernyms

The “Unseen verbs” task is the classification of in-
stances of verbs the classifier has not been trained
with, as discussed in section 6 above. Assigning the
most common frame to all examples gives an accu-
racy of 27%, which we use as the baseline in table
2.

As discussed in section 4, using the WordNet
mapping improves the balance of the training data
by making more verbs available for training, so it is
not surprising that there is such a clear improvement
in performance.

The other obvious result is that performance is
better when the classifier is trained on the whole
Penn Treebank, instead of simply the SemCor sub-
set. This indicates that on these tasks, it is worth
having more data even at the cost of more ambigu-
ous feature values. The disparity between the two
datasets is much greater on the Wall Street Journal
test data than on the classification of unseen verbs.
We believe this is because the Penn Treebank train-
ing data includes the rest of the Wall Street Journal
text, while our SemCor data is limited to the inter-
section of the SemCor text and the parsed Brown
section from the Penn Treebank. This intersection
is 31,456 clauses, and contains no newswire text.
The Penn Treebank does not include skeletal parses
of the newswire sections of the Brown corpus be-
cause the Wall Street Journal data amply represents
that genre.

The performance on unseen verbs is relatively
poor, but nevertheless encouraging. Even noisy pre-
diction on this task may reduce the time required for
manual extension of FrameNet’s vocabulary. This
is especially true if only verbs classified with espe-
cially high confidence are considered as candidates
for addition.

The main result we report is the 76% accuracy
identifying verb frames in real text. While there are
no directly comparable results reported in the litera-
ture, this result considerably outperforms the trivial

method of simply assigning frames to verbs when
they are unambiguous, which gives 40% accuracy.
We use this figure as the baseline for comparison.

8 Related Work
This research falls under the broad umbrella of lex-
ical semantics acquisition, such as the work of Pan-
tel and Ravichandran (2004) or Fouvry (2003). The
most pertinent research of this type to our system
comes from the SALSA project(Erk et al., 2003),
which is creating a German frame lexicon and an-
notated corpus. In particular, Erk (2005) uses com-
plement and adjunct heads (in addition to bigram
and trigrams) as features in a naive Bayes classi-
fier to assign frame labels to verbs. She reports
a result of 74% on this task for the SALSA lexi-
con. Because the classification scheme — and in-
deed, its language — is different from ours, this re-
sult is not directly comparable with our own; how-
ever, Erk does compare baseline scores for both the
SALSA projecttask and the equivalent FrameNet
task, finding that the SALSA task’s baseline is con-
siderably lower: assigning each verb its most fre-
quent frame yields 93% accuracy for the labelling
task on the FrameNet example corpus, and only
69% on the SALSA corpus. This reflects the fact
that the SALSA lexicon is more polysemous than
the current release of FrameNet: 4.12 for SALSA,
2.27 for FrameNet. This baseline would be quite
meaningless for our task, as we are testing on unam-
biguous verbs — so our baseline according to Erk’s
method would be 100%.

9 Conclusion
We have reported two results on a novel kind of
task: the assignment of frame labels to text which
was not manually selected for FrameNet annotation.
Despite the lack of obvious training data, our system
achieves 76% accuracy, 55% when the verb is new.

These results support the argument made by Shi
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and Mihalcea (2005): a comprehensive mapping be-
tween WordNet and FrameNet is both possible and
desirable. A comprehensive mapping will imme-
diately make available a corpus of frame labelled
material, in the form of the SemCor corpus. This
text will also be annotated with syntactic bracketing
and WordNet senses. A useful task for future work
is to investigate how the results from our classifier
might be used to produce such a mapping semi-
automatically. High confidence misclassifications
may also be able to reveal situations where a word
is missing from one or more frames.

For now, we demonstrate that the FrameNet clas-
sification scheme is at least robust enough to per-
form on data that was not used to design it.
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