
Proceedings of the Australasian Language Technology Workshop 2005, pages 120–126,
Sydney, Australia, December 2005.

Structuring Documents Efficiently

Robert Marshall, Steven Bird and Peter J. Stuckey∗

Department of Computer Science and Software Engineering
University of Melbourne, Victoria 3010, Australia
{robertgm,sb,pjs}@csse.unimelb.edu.au

∗NICTA Victoria Laboratory

Abstract
Documents are typically marked up to enable ren-
dering and to facilitate reuse. However, retargetting
a document often requires pervasive changes to the
markup. Power et al. have proposed a new level
of representation called document structure which
captures just those aspects of graphical organisation
that are significant for conveying meaning. These
document structures can be generated automatically
from rhetorical structures, abstract representations
of the meaning of a text. The mapping is highly
indeterminate, being governed by a large number of
interacting constraints. We present a constraint pro-
gramming approach to the problem, and report on
early experiments with an implementation in Pro-
log.

1 Introduction
Documents are typically marked up to enable ren-
dering and to facilitate reuse. Simple adjustments in
layout and style can be implemented without touch-
ing the source document. However, retargetting a
document often requires pervasive changes to the
markup itself — e.g. changing a bulleted list to an
inline list — a fact which suggests that the markup
is not sufficiently abstract.

Recent research by Power et al. (2003) has iden-
tified a new level of representation called document
structure which captures just those aspects of graph-
ical organisation that are significant for conveying
meaning. These representations can be generated
automatically from rhetorical structures, abstract
representations of the meaning of a text.

Different document structures corresponding to
the same rhetorical structures represent different
realizations of the text. We may want to consider
different document structures for the same
rhetorical structure for a number of reasons. One
document structure may be easier to understand
than another for the same rhetorical structure. For
example a bulleted list usually provides a clearer
separation of which items form part of the list

than an inline comma separated list. Alternatively,
some document structures may have a much more
compact representation which may be essential
for viewing on a PDA screen with limited size,
a constraint that is irrelevant when viewing the
same document on a large screen. In this paper
we concentrate on finding document structures that
minimize the number of “defects”, a somewhat
artificial measure of comprehensibility flaws from
Power et al. (2003).

The mapping from rhetorical structure to docu-
ment structure is highly indeterminate, being gov-
erned by a large number of interacting constraints.
The existing implementation method is to generate
all possible document structures corresponding to a
given rhetorical structure, evaluate them against the
constraints, and find the best solution (minimizing
“defects”). However, this method does not scale
since the search space is exponential in the size of
the document.

We present a constraint programming approach
to the problem, in which an objective function is
stated in advance in order to greatly prune the search
space. We report on early experiments with an
implementation in SICStus Prolog.

This paper is organized as follows. First, in §2
we review the work of Power et al. (2003) on
document structure, the mapping from rhetorical
structure, and the scoring metrics. Next, in §3 we
report on our constraint programming implementa-
tion, before reporting on the results of our exper-
imental work in §4. We close by presenting our
conclusions and identifying issues for future inves-
tigation.

2 Review of document structure
Natural language generation systems produce for-
matted text from abstract meaning representations.
Power et al. (2003) have demonstrated that the
graphical organization of this text – e.g. its head-
ings, fonts, and linebreaks – can convey meaning.
They propose to capture those aspects of graphical
organisation which carry meaning using a new level

120



Elixir is safe to use since

• the medicine has been thoroughly tested,

• it has no significant side effects.

(a) Bulleted List Format

The medicine has been thoroughly tested; it has no sig-
nificant side-effects. Therefore, Elixir is safe to use.

(b) Inline List Format

evidence

“Elixir is safe to use” list

“the medicine has been
thoroughly tested”

“it has no signifi-
cant side effects”

(c) Common Rhetorical Structure

Figure 1: Two formats for an excerpt from a patient
information leaflet, and the underlying rhetorical
structure, from (Power et al., 2003).

of representation called document structure. Power
et al. (2003) define document structure as “the orga-
nization of a document into graphical constituents
like sections, paragraphs, sentences, bulleted lists,
and figures; it also covers some features within sen-
tences, including quotation and emphasis.” They
argue that the same document structure can be ren-
dered into formatted text in multiple ways, as illus-
trated in the patient information leaflet text in Fig-
ure 1(a) and 1(b).

Rhetorical structures represent the meaning of a
text independently of its realization as a document
(see Figure 1(c)). Power et al. (2003) use logic
programming techniques to convert rhetorical struc-
tures into document structures which realise a given
rhetorical structure. This generates a large number
of candidates, and these are evaluated for confor-
mance to a variety of heuristics such as “satellite
precedes nucleus.”

2.1 Rhetorical structure
Rhetorical structure is intended to represent the
meaning of a text independently of its realisation
as a document (Mann, 1999). Two documents with
different formatting, using different words—or
even written in different languages—could have the
same rhetorical structure.

New New World
World Guide Guide

to Wines to Wines

Figure 2: Example of how layout affects meaning
(Power et al., 2003)

Rhetorical structure is expressed by rhetorical
relations, which describe the relationship between
facts, or between other rhetorical relations. A
rhetorical relation consists of a type and some
parameters, e.g. justify(A, B) has type
justify and parameters A and B, and has the
interpretation that we believe A to be true based
on evidence B. Parameters may be other rhetorical
relations, or they may be elementary propositions
which are not dependent on any other information.
Rhetorical relations are divided into two categories.
Nucleus-satellite relations generally take two
parameters: the nucleus is the central piece of
information, and the satellite supports it (e.g.
justify). Multinuclear relations can take many
parameters, each of which is of equal importance to
the others (e.g. list).

2.2 Document structure

The theory of document structure was originally
proposed by Power et al. (2003). The central insight
is that the layout of a document affects its mean-
ing. A simple illustration of this point appears in
Figure 2 (Scott, pers. comm.). Power et al. (2003)
contend that all texts have layout, even if it is very
basic.

Document structure is related to markup
languages such as HTML and LATEX, which
allow us to describe the structure of a document
independently of its presentation. However,
such markup languages are only suggestive of
document structure, for they inconveniently blur the
distinction between descriptive and presentational
markup—c.f. (Coombs et al., 1987).

The formal theory of document structure is based
around document units. Document units are ele-
ments such as phrases, sentences, paragraphs and
chapters. Each unit can be made up of one or more
sub-units, giving rise to a tree structure.

A document unit is represented by the following
four variables: level, indentation, position, and con-
nective.

Level: This represents the level of importance of
the unit in the realised document. It is an integer
from zero to five, corresponding to a realisation as

121



list

“the FDA approves Elixir+” “the FDA bans Elixir”

• The FDA approves Elixir+, and

• the FDA bans Elixir

(a) Bulleted List Format

list

concession

“the FDA approves Elixir+” “the FDA bans Elixir”

“...”

• The FDA approves Elixir+, but the FDA bans
Elixir.

• ...

(b) Inline List Format

Figure 3: Two different rhetorical structures that
lead to level zero and indentation one for the ele-
mentary units.

a phrase (comma-terminated), clause (semicolon-
terminated), sentence, paragraph, section, or chap-
ter, respectively. In Figure 1, the children of the
list relation are level zero in the first realisation,
and level one in the second realisation.

Indentation: A document unit may be indented
from its parent, allowing such items as bulleted lists.
Power et al. (2003) represent indentation as an
integer, indicating how many times a unit has been
indented relative to the root node. In Figure 1, the
list is indented in the first realisation, but not the sec-
ond. However, we contend that the most important
feature is not the total amount of indentation in an
element, but rather whether it is indented relative to
its parent.

If an element is indented relative to its parent, it
must be realised on its own line and with its own
bullet point, whereas if its parent is at the same
level, it can be part of a larger structure, which is
all indented. Consider the two rhetorical structures
and realisations shown in Figures 3(a) and 3(b).

In both cases, the elementary units have level zero
and indentation one, meaning that they are realised
as phrases which are terminated with a comma, and
are indented once from the base. However, in the

first case they are rendered on separate lines, while
in the second they are on the same line.

The reason for this is that in the first case, they are
list elements, while in the second, they are both part
of a concession. It is clear that when list elements
are indented, they should each be realised on a sep-
arate line, but this is not actually spelled out in the
document structure. While this can be inferred from
the relative indentations of the elementary units to
their parents, it adds unwanted complexity to the
implementation, as well as violating the modularity
of the document units.

Accordingly, we define IndentationHere as
a binary variable, indicating whether a given docu-
ment unit is indented relative to its parent. Note that
the indentation at any given node is just the sum of
the IndentationHere variables for it and each
of its ancestors.

Position: The position variable indicates the order
in which the nucleus and satellite occur. The two
realisations in Figure 1 show alternate positionings
of the nucleus and satellite of the evidence rela-
tion. Because all of the children of a multinuclear
relation are of the same importance, we have the
freedom to reorder them in any way. But for the pur-
poses of this paper these reorderings will not change
the evaluation of the realised document, hence they
are always rendered in the same order that they
occur in the rhetorical structure.

Connective: A discourse connective is always
used to denote the rhetorical relationship between
different document units. The only exception is for
the leaf nodes of the document structure, which
represent basic propositions. Figure 1 shows two
different connectives for the evidence relation.

2.3 Discourse connectives
Discourse connectives indicate the rhetorical rela-
tionships between consecutive spans of text in a dis-
course.

Power et al. (1999) model discourse connectives
with four attributes: relation, locus, phrase and syn-
tactic type. These specify: the rhetorical relation
which the connective represents; whether it should
be attached to the nucleus or satellite; the text which
realises it; and the syntactic restrictions on where
the connective can be used. They side-step the ques-
tion of whether a discourse connective should be
realized overtly, insisting that there be a one-to-one
relationship between rhetorical relationships in the
rhetorical structure and discourse connectives in the
generated text.

They define three syntactic types: parenthetical,
coordinating or subordinating. Coordinating

122



The FDA bans Elixir; however, the FDA approves
Elixir+.

(a) A parenthetical connective

Although the FDA bans Elixir, the FDA approves
Elixir+.

(b) A coordinating connective

The FDA bans Elixir, but the FDA approves Elixir+.

(c) A subordinating connective

Figure 4: Examples of the different types of dis-
course connectives

connectives force the children to be of level zero.
Subordinating and parenthetical connectives require
that the satellite to appear before the nucleus, with
parenthetical connectives additionally forcing the
children to be of level greater than zero.

For example, the rhetorical relation concession
can be realised by the discourse connectives how-
ever, although and but. These connectives are of
parenthetical, coordinating and subordinating types,
respectively. We give three different realisations
of the same rhetorical structure in Figure 4. Note
that the order of the two elements is reversed for
the coordinating connective, and the different levels
(sentences, phrases or clauses) used in each exam-
ple.

2.4 Generating a document structure
Power et al. (2003) examine the task of determin-
ing a document structure from a given rhetorical
structure, which they call “document structuring”
(Power, 2000; Power et al., 2003), and implement it
in a system called ICONOCLAST (Integrating Con-
straints on Layout and Style). The input consists of
a collection of simple propositions organized into a
rhetorical structure tree. The document structurer
arranges these into a coherent collection of para-
graphs, text-sentences and the like. This is then
converted into an actual document by a syntactic
realiser.

Each node on the rhetorical structure tree corre-
sponds to a node on the document structure tree.
The four variables associated with the node are con-
strained in various ways. First, the level of a child
unit must be less than or equal to that of its parent,
and equal to that of its siblings. The only exception
is when the child unit is indented, in which case its
level is independent of its parent, although it must

still be equal to that of its siblings. Second, the
indentation of a child unit must be either equal to
or one greater than that of its parent. The posi-
tions of siblings must obviously be distinct. Third,
the connective must realise the rhetorical relation.
Finally, the type of the connective places additional
constraints on the level and position of the children
of the current unit, which must be satisfied.

Power et al. (2003) implement this process using
logic programming. The different choices in map-
ping the rhetorical structure to the document struc-
ture are represented by constraints in the logic pro-
gram, with the exception of discourse connectives.
These set choicepoints, as in a standard logic pro-
gram.

Moreover, they evaluate the defects of a struc-
ture (as described in the following section) after
it has been completely generated. These factors
force them to generate all possible document struc-
tures for a given rhetorical structure, using both a
branch-and-bound and standard Prolog backtrack-
ing, before they can choose the best structure.

There are exponentially many (in the number of
nodes in the rhetorical structure) candidate docu-
ments for any rhetorical structure. The number of
candidates quickly blows up so that the approach is
impractical for rhetorical structures with more than
10 nodes.

2.5 Scoring document structures
In order to choose between different document
structures, Power et al. (2003) generate all valid
document structures, then score each one by
counting its undesirable features. The larger the
score, the worse the structure. They give an
example of a rhetorical structure with one relation
between two facts, with seven renderings, and one
with three relations and four facts, which has 58
renderings. They identify six kinds of undesirable
features, which we describe below.

Nucleus before satellite: The nucleus appears
before the satellite. This is undesirable, according
to Power et al. (2003), because of psycholinguistic
evidence which suggests that the more important
information should be placed at the end of a
sentence (and this is the common practise in
English). The first realisation in Figure 1 shows a
nucleus before satellite defect.

Left-branching structure: The left side of
the document structure tree branches, while the
right side does not. The second realisation in
Figure 1 contains a left-branching structure, as the
list child of the root node is realised before the
elementary child.

123



Lost rhetorical grouping: The document struc-
ture can conflate distinct levels of the rhetorical
structure. That is, a child and parent (and possibly
higher-level ancestor) nodes in the rhetorical struc-
ture can be realised at the same level in the docu-
ment structure. This makes it more difficult to infer
the underlying structure from the text. For example,
in Figure 4 the second and third examples contain
this defect, while the first does not.
Single-sentence paragraph: A paragraph
contains only one sentence.
Oversimple text-clauses: A sentence is com-
posed of two text-clauses (clauses separated by
a semi-colon), each of which expresses a single
elementary proposition. The first sentence of
the second realisation in Figure 1 contains is an
oversimple text-clause.
Repeated discourse connective: A single rhetor-
ical structure is represented twice in the document
structure, by the same connective, and in such a way
that one of the occurrences is on a descendent node
of the other.

2.6 Summary
Rhetorical structures represent the meaning of a text
independently of its realisation. Document struc-
tures include those realisation details which are rel-
evant to its meaning. A document structure can
be generated from a rhetorical structure using a
constraint-based approach as described in (Power
et al., 2003), but the current implementation is too
inefficient to be used on large rhetorical structures.

3 Constraint Programming
Implementation

Constraint programming (Marriott and Stuckey,
1998) allows us to specify relationships between
variables, without having to actually calculate the
values that the variables may take. In this work
we use constraint logic programming over finite
domains (Van Hentenryck, 1989), which augments
a traditional logic programming language with the
capacity to apply mathematical constraints over
Boolean and integer variables over fixed ranges.

In order to express the complex constraints that
arise in defining document structure and defects we
make use of reified constraints. These allow us to
attach a Boolean variable to the result of a con-
straint. For example B ⇔ X > 3 is a constraint
that holds if B = 1 and X takes a value greater than
3, or B = 0 and X takes a value less than or equal
to 3.

We implemented a document structurer in SIC-
Stus Prolog, using the same constraint model as

Power et al. (2003). However, our program differs
in that it simultaneously evaluates both the required
constraints to create the document structure, and the
constraints required to find the defects. It produces
as output both a document structure and a count of
its defects. By contrast, the document structurer of
Power et al. (2003) produces a document structure
which must then be evaluated. Moreover, our docu-
ment structure contains positioning information for
each word in the output.

Mapping a rhetorical structure to a document
structure involves a large number of independent
choices. As the rhetorical structure grows, the
number of corresponding document structures
grows exponentially. We would like to choose only
those with less than a fixed number of defects,
or perhaps the one having the fewest defects.
Generating all possible document structures,
to only choose one, is both unnecessary and
impractical as the number of candidates grows so
rapidly.

Our constraint programming model constrains
the count of defects while we are generating
document structures. This allows us to stop
generating a structure as soon as it has more defects
than the upper limit (for minimization this limit is
defined by the number of defects in the best answer
so far). Moreover, because a partially generated
document structure may in fact lead to several
document structures, each of which will have at
least as many defects as the partially generated
structure, we can prune entire branches from the
search tree.

We accomplish this by expressing the rules for
the defects as constraints. Each constraint is eval-
uated at every node on the document structure tree,
indicating whether or not the defect occurs at that
point. We simply sum them all to obtain the total
count of defects found so far. The constraints are
stored for each node, along with the other docu-
ment structure parameters. The rules for the nucleus
before satellite and left-branching defects are given
below. In the following, PN and PS are the posi-
tions of the nucleus and satellite nodes, while EN

and ES are Boolean variables indicating whether
the nucleus and satellite are elementary.

PN < PS ⇒ NucleusBeforeSatellite

(EN ∧ ¬ES ∧ PS < PN)
∨(ES ∧ ¬EN ∧ PN < PS)

⇒ LeftBranching

Because the total number of solutions to be
checked is exponential in the size of the structure,
the problem can easily become intractable for large

124



structures. Therefore, we set a maximum number
of assignments which can be made, and simply fail
to find any solutions after this point, and return the
best solution which has been found thus far.

3.1 Improving the searching efficiency
Expressing the entire model in a constraint-based
form allows us to search for a solution with the
fewest defects more quickly than a non constraint-
based implementation. However, the search space
is still very large, so we have implemented several
other techniques to improve the searching.
Labelling order: Because labelling one type of
variable will affect the domain of others, the order in
which variables are labelled can make a significant
difference. For example, if we set the connective
to a coordinating type, then the levels of any child
nodes must be zero, while the converse does not
necessarily hold. Therefore, at least in this case, it
will be more efficient to label the connective before
the level. The relationships between the variables
are relatively complicated, so it is unclear what
the best labelling order is without conducting some
experiments. We test two methods for ordering vari-
ables. One approach is to label the document struc-
ture by traversing the tree, depth-first. We make one
pass for each variable type. For example, we might
first label all the Indentation variables, then all
the level variables, and so on.

The other method we use is known as first fail
labelling (Haralick and Elliott, 1980). Using this
method, we label the variables in order of domain
size, starting with the smallest. This is intended to
reduce the amount of branching which occurs, and
prune large regions of the search space as early as
possible. Either of these methods can be used in
conjunction with any of the following strategies.
Iterating through the goal variable: One tech-
nique which can improve efficiency is to iterate
through the variable to be minimised, starting from
zero, attempting to find a solution at each value.

While it may seem inefficient, this procedure can
sometimes be faster than a simple search, because
the goal variable is constrained to just one value for
each call. Moreover, as soon as one of the calls
succeeds, we are guaranteed to have the minimum
value of the goal variable. Using a simple minimi-
sation search, it is generally not immediately clear
if a given solution is in fact the minimum, requiring
further search.
Limited-discrepancy search: Limited-discrep-
ancy searching (Harvey and Ginsberg, 1995)
requires a heuristic, which guesses the best value
for each labelling choice. Any choice which differs

from the heuristic is called a discrepancy. Using this
method, we search as before, but with the number
of discrepancies limited to some upper bound.
This has the effect of reducing the search space,
potentially rejecting many possible solutions, but
also allowing for a much faster search.

Our heuristic works as follows. If the level vari-
able is not already set, we choose the second largest
possible value for it. We are attempting to avoid two
nodes having the same level, thereby incurring a lost
rhetorical grouping defect. The larger the value, the
more values will be available for descendant nodes
to use, but the largest possible value will generally
be the same as its parent.

We always choose to indent multinuclear rela-
tions, thereby allowing children to take any avail-
able level, and place the satellite first, avoiding a
nucleus before satellite defect.

Subordinating connectives place the least restric-
tive constraints on the connected nodes, followed
by parenthetical and then coordinating connectives.
In particular, we do not wish to use a coordinating
connective, as it forces the nucleus and satellite (and
hence any child nodes they may have) to be of level
zero, and will incur a lost rhetorical grouping defect
on all further child nodes. Hence, we choose a sub-
ordinating connective if one is available; otherwise
a parenthetical one, and finally a coordinating con-
nective.

Unfortunately, it is unclear how many discrep-
ancies to allow when using limited-discrepancy
searching. We have tested our implementation
using a maximum of both 3 and 10 discrepancies,
but these choices are quite arbitrary.

Optimistic partitioning: Optimistic partitioning
(Prestwich and Mudambi, 1995) requires no fur-
ther information except the total range of the search
space, which is from zero to the total number of
nodes multiplied by 6 (the number of defect types).
We split the search space in two and search for a
solution in the first half of the space. If one is
found, we partition again, using this solution as the
new upper bound. If there is no solution in the first
half, we search again, in the upper half of the search
space. If there is a solution in the upper half, we
partition again, using the midpoint and the solution
in the second half of the search space as the lower
and upper bounds, respectively.

In either case, we store the current solution as the
best one thus far, and if at any time we fail to find
a solution in the given range, then we know that the
previous best solution is the overall minimum.

125



Restricting the number of assignments: A final,
crude method of improving performance is to sim-
ply restrict the total number of assignments which
can be made. Once we have reached this limit, we
can simply return the best solution found up to that
point. While it is preferable to find the best solution,
the search space is exponential, and there may be
cases in which this problem is intractable.

4 Results
Our testing data comes from Marcu’s rhetorical
structure corpus (Marcu, 2000). We have chosen a
particular article from his corpus, and rendered the
individual rhetorical structures which make up this
article.

The rhetorical relations used in this corpus gen-
erally do not specify corresponding discourse con-
nectives, so we used random placeholders. While
this produces rather ugly output, it is sufficient for
the purposes of testing the efficiency of the various
labeling techniques.

As described in §3.1, we iterate through the doc-
ument structure tree several times, once for each
variable type. We have tested all 24 possible vari-
able orderings. The numbers given in Table 1 repre-
sent the number of variable assignments required to
find the optimal solution, divided by the number of
variable assignments required by the most efficient
variable ordering for the same structure.

The order in which variables are labelled has
a large impact on the efficiency of the search,
by a factor of about 4 on our testing data. The
fastest method seems to be to label the Level

and Position variables first, and then either of
the other two. For the next table, we used the
“Level,Position,IndentationHere,ConnectiveIndex”
labelling strategy.

We have tested all of the search strategies dis-
cussed in the previous section, using both the tree-
traversal and first-fail methods of choosing which
variable to label. We forced all searches to termi-
nate after 100,000 assignments and return the best
solution found at that point, in order to prevent inor-
dinately long execution times. Results are shown
in Tables 2 and 3. We show the number of nodes
in the rhetorical structure, Size, as well as the min-
imal number of defects possible (if known), Min
Defects. The remaining columns give the number
of assignments required to find the best solution,
except the column First which gives the number of
assignments to find the first solution with simple
search. Basic is the simple minimization search,
Iterating iterates the defect count upwards from
0, OP uses optimistic partitioning, FF is first fail

search, and LD(n) is limited discrepancy search
with a max discrepancy of n. If the best solution
found is not optimal it is shown in parentheses after
the number of assignments figure. A dash indicates
no solution was found with 100,000 assignments.
Note that we have not normalised these results, as
it is sometimes unclear which is the best solution;
some strategies may perform faster than others but
return a non-optimal solution, and some are termi-
nated early for the sake of tractability.

For the search strategy, limited-discrepancy
search and iterating through the defect variable
(using tree-traversal labelling) seem to require the
least number of assignments in order to find a
solution. However, the best search strategy varies
considerably, depending on the structure. However,
if we reach the maximum number of assignments
without finding an optimal solution, iteration
cannot provide a sub-optimal solution, because by
definition, the first solution it finds is the optimal
one. For this reason, limited-discrepancy may be a
better choice when realising large structures.

Limited-discrepancy search often does not find
a solution when used with first-fail labelling. We
believe that this is because first-fail labelling will
choose labelling variables from all over the docu-
ment structure. Therefore, once a discrepancy has
been incurred, the next variable to be labelled may
be from an entirely different part of the document
structure. This may happen several times, causing
several discrepancies to occur, before the choices
which have been made can affect new ones.

By contrast, when using tree-traversal labelling,
once a discrepancy has been incurred, the next vari-
ables to be labelled will come from the same node,
or its children, which will be constrained by the
choice which has just been made.

Tree-traversal labelling seems to outperform first-
fail labelling in most other cases too, but much less
dramatically.

Basic search performs more poorly than the other
methods in most cases, as we might expect. Opti-
mistic partitioning represents an improvement on
this, but not as much as limited-discrepancy or iter-
ative searching.

Finding the first solution is generally quite fast,
but the first solution is almost never optimal. It
is also interesting to note that even merely find-
ing the first solution is often slower than finding
the optimal limited-discrepancy solution, indicating
that our heuristic is improving performance consid-
erably.

Overall, the iterating approach followed by a lim-
ited discrepancy search when this fails to find the

126


	Multimedia Presentation of Grammatical Description: Design Issues

