
Proceedings of the Australasian Language Technology Workshop 2005, pages 87–95,
Sydney, Australia, December 2005.

Efficient Knowledge Acquisition for Extracting Temporal Relations

Son Bao Pham and Achim Hoffmann
School of Computer Science and Engineering

University of New South Wales, Australia
{sonp,achim}@cse.unsw.edu.au

Abstract
We present KAFTIE – an incremental knowledge
acquisition framework which utilizes expert knowl-
edge to build high quality knowledge base annota-
tors. Using KAFTIE, a knowledge base was built
based on a small data set that outperforms machine
learning algorithms trained on a much bigger data
set for the task of recognizing temporal relations. In
particular, this can be incorporated to bootstrap the
process of labeling data for domains where anno-
tated data is not available. Furthermore, we demon-
strate how machine learning can be utilized to re-
duce the knowledge acquisition effort.

1 Introduction
Recent years have seen growing interests in tempo-
ral processing for many practical NLP applications.
For example, question answering tasks try to find
when and how long an event occurs or what events
occur after a particular event.

Several works have addressed temporal process-
ing: identification and normalization of time ex-
pressions (Mani and Wilson, 2000), time stamping
of event clauses (Filatova and Hovy, 2001), tempo-
rally ordering of events (Mani et al., 2003), recog-
nizing time-event relations in TimeML (Boguraev
and Ando, 2005). At a higher level, these temporal
expressions and their relations are essential for the
task of reasoning about time, for example, to find
contradictory information (Fikes et al., 2003).

In this emerging domain, there is a clear lack of
a large annotated corpus to build machine learning
classifiers for detecting temporal relations. We pur-
sued the idea that an incremental knowledge acqui-
sition approach could be used to develop a knowl-
edge base of rules that utilizes experts’ knowledge
to overcome the paucity of annotated data. In fact,
this approach could be combined nicely with the
process of annotating data. When a new piece of
data is annotated differently to what an existing KB
proposes, the annotator specifies a justification for
the decision in the form of a rule which is added

to the knowledge base. Our experience shows that
the time it takes to formulate a rule explaining why
the data is annotated in a certain form is not much
if the users have already spent time on deciding on
the annotation. This is particularly true for complex
tasks e.g. annotating relations between temporal ex-
pressions where it is not obvious whether there is
any relation between temporal expressions. Impor-
tantly, rule formulation time does not depend on the
size of the knowledge base.

Our incremental knowledge acquisition frame-
work is inspired by Ripple Down Rules (Compton
and Jansen, 1990) which allows users to add rules
to the knowledge base (KB) incrementally while au-
tomatically ensuring that the knowledge base is al-
ways consistent. A new rule added to the KB is only
applicable to those cases where the current knowl-
edge base did not perform satisfactorily according
to the users. This effectively avoids the adverse in-
teractions of multiple rules in the KB.

We show that with our framework KAFTIE
(Knowledge Acquisition Framework for Text clas-
sification and Information Extraction), we can
quickly develop a large KB based on a small data
set that performs better than machine learning ap-
proaches trained on a much bigger data set on the
task of recognizing temporal relations.

2 TimeML
TimeML is intended as a Metadata Standard for
Markup of events, their temporal anchoring and
how they relate to each other (Pustejovsky et al.,
2003). It aims at capturing the richness of time
information by formally distinguishing events and
temporal expressions in text. TimeML defines four
temporal elements as tags with attributes: TIMEX3,
SIGNAL, EVENT and LINK. TIMEX3 is mod-
elled on TIMEX (Setzer and Gaizauskas, 2001) and
TIMEX2 (Ferro et al., 2001). It marks up explicit
temporal expressions such as times, dates, durations
etc. SIGNAL is used to annotate function words
that indicate how temporal objects are to be related
to each other e.g. temporal connectives (when) or

87

temporal prepositions (on, during). The EVENT
tag covers elements in a text describing situations
that occur or happen. Syntactically, EVENTs are
tensed verbs, event nominals, stative adjectives and
modifiers. The LINK tag encodes various relations
that exist between temporal elements of a docu-
ment which is divided into three subtypes namely:
TLINK, SLINK and ALINK. TLINK is a temporal
link representing a relation between an event and
a time or between two events. SLINK represents
a subordination relation between two events or an
event and a signal. ALINK represents an aspectual
relationship between two events.

In this paper, we report results on recognizing
TLINK between an event and a time expression.
The main reason for focusing on this subtask is to
enable comparison with existing works. In fact, our
approach is not geared towards this task and is gen-
eral enough to be applicable to recognize other link
types as well.

3 Knowledge Acquisition Methodology
In this section we present the basic idea of Ripple-
Down Rules (Compton and Jansen, 1990) which in-
spired our approach. RDR was first used to build
the expert system PEIRS for interpreting chemical
pathology results (Edwards et al., 1993). PEIRS ap-
pears to have been the most comprehensive medical
expert system yet in routine use, but all the rules
were added by pathology experts without program-
ming skill or knowledge engineering support whilst
the system was in routine use. Ripple-Down Rules
and some further developments are now success-
fully exploited commercially by a number of com-
panies.

Knowledge Acquisition with Ripple Down
Rules: Ripple Down Rules (RDR) is an unortho-
dox approach to knowledge acquisition. RDR does
not follow the traditional approach to knowledge
based systems (KBS) where a knowledge engineer
together with a domain expert perform a thorough
domain analysis in order to come up with a knowl-
edge base. Instead a KBS is built with RDR incre-
mentally, while the system is already in use. No
knowledge engineer is required as it is the domain
expert who repairs the KBS as soon as an unsatis-
factory system response is encountered. The expert
is merely required to provide an explanation for why
in the given case, the classification should be differ-
ent from the system’s classification.

Suppose the system’s classification was produced
by some rule RA. The explanation would refer to at-
tributes of the case, such as patient data in the medi-
cal domain or a linguistic pattern matching the case

in the natural language domain. The new rule RB

will only be applied to cases for which the provided
conditions in RB are true and for which rule RA

would produce the classification, if rule RB had not
been entered. I.e. in order for RB to be applied to
a case as an exception rule to RA, rule RA has to
be satisfied as well. A sequence of nested excep-
tion rules of any depth may occur. Whenever a new
exception rule is added, a difference to the previous
rule has to be identified by the expert. This is a nat-
ural activity for the expert when justifying his/her
decision to colleagues or apprentices. A number of
RDR-based systems store the case which triggered
the addition of an exception rule along with the new
rule. This case, being called the cornerstone case
of the new rule R, is retrieved when an exception to
R needs to be entered. The cornerstone case is in-
tended to assist the expert in coming up with a justi-
fication, since a valid justification must point at dif-
ferences between the cornerstone case and the case
at hand for which R does not perform satisfactorily.

Single Classification Ripple Down Rules: A
single classification ripple down rule (SCRDR) tree
is a finite binary tree with two distinct types of
edges. These edges are typically called except and if
not edges. See Figure 1. Associated with each node
in a tree is a rule. A rule has the form: if α then
β where α is called the condition and β the conclu-
sion.

Cases in SCRDR are evaluated by passing a case
to the root of the tree. At any node in the tree, if
the condition of a node N ’s rule is satisfied by the
case, the case is passed on to the exception child of
N . Otherwise, the case is passed on the N ’s if-not
child. The conclusion given by this process is the
conclusion from the last node in the RDR tree which
fired. To ensure that a conclusion is always given,
the root node typically contains a trivial condition
which is always satisfied. This node is called the
default node.

A new node is added to an SCRDR tree when
the evaluation process returns the wrong conclusion.
The new node is attached to the last node evaluated
in the tree provided it is consistent with the exist-
ing rules. If the node has no exception link, the new
node is attached using an exception link, otherwise
an if not link is used. To determine the rule for the
new node, the expert formulates a rule which is sat-
isfied by the case at hand.

4 Our KAFTIE framework
We use SCRDR for building knowledge bases in the
KAFTIE framework. While the process of incre-
mentally developing knowledge bases will eventu-

88

R1:
({VG.hasAnno==EVENT_I}):RDR1_vg1
({PP}?):RDR1_pp1
({PP.hasAnno==TIMEX3_R}):RDR1_pp2
Conclusion: INCLUDES

R3:

Conclusion: INCLUDES

R8:

Conclusion: NONE

R196:

Conclusion:AFTER

R10:
({RDR3_np1.hasAnno==TIMEX3,

RDR3_np1.hasAnno==EVENT_I})
Conclusion: NONE

{RDR1_pp2,Token.string==after}

{RDR1_pp2,Token.string==below}

({NP.hasAnno==EVENT_I}):RDR3_np1

({PP.hasAnno==TIMEX3_R}):RDR3_pp1

Conclusion:NONE

R0: true except except

except

false

false

Figure 1: An extract of a KB for recognizing
TLINK between an EVENT and a TIMEX3. Note
that SCRDR is different from a decision tree: rules
in internal nodes can be used to give conclusions to
input cases.

ally lead to a reasonably accurate knowledge base,
provided the domain does not drift and the experts
are making the correct judgements, the time it takes
to develop a good knowledge base depends heav-
ily on the appropriateness of the used language in
which conditions can be expressed by the expert.

Some levels of abstraction in the rule’s condition
is desirable to make the rule expressive enough in
generalizing to unseen cases. To realize this, we use
the idea of annotations where phrases that have sim-
ilar roles (belong to the same concept) are deemed
to belong to the same annotation type. Annotations
contain the annotation type, the character locations
of the beginning and ending position of the anno-
tated text in the document, and a list of feature value
pairs.

4.1 Rule description
A rule is composed of a condition part and a con-
clusion part. A condition is a regular expression
pattern over annotations. It can also post new an-
notations over matched phrases of the pattern’s sub-
components. The following is an example of a pat-
tern which posts an annotation over the matched
phrase:

({Noun}{VG.type==FVG}{Noun}):MATCH

This pattern would match phrases starting with a
Noun annotation followed by a VG, which must
have feature type equal to FVG, followed by another
Noun annotation. When applying this pattern on a
piece of text, MATCH annotations would be posted
over phrases that match this pattern. As annotations
have feature value pairs, we can impose constraints
on annotations in the pattern by requiring that a fea-
ture of an annotation must have a particular value.

A piece of text is said to satisfy the rule condi-
tion if it has a substring that satisfies the condition
pattern. The rule’s conclusion contains the classifi-
cation of the input text. In the task of recognizing

temporal relations between a pair of temporal ex-
pressions (event or time), the conclusion is either
the relation type or NONE.

Besides classification, our framework also offers
an easy way to do information extraction. Since
a rule’s pattern can post annotations over compo-
nents of the matched phrases, extracting those com-
ponents is just a matter of selecting appropriate an-
notations. In this paper, the extraction feature is not
used, though.

4.2 Annotations and Features
Built-in annotations: As our rules use patterns
over annotations, the decision on what annotations
and their corresponding features should be are im-
portant for the expressiveness of rules. Following
annotations and features make patterns expressive
enough to capture all rules we want to specify for
various tasks.

We have Token annotations that cover every to-
ken with string feature holding the actual string, cat-
egory feature holding the POS and lemma feature
holding the token’s lemma form.

As a result of the Shallow Parser module, which
will be described in the next section, we have sev-
eral forms of noun phrase annotations ranging from
simple to complex noun phrases, e.g. NP (simple
noun phrase), NPList (list of NPs) etc. All forms
of noun phrase annotations are covered by a general
Noun annotation.

There are also VG (verb groups) annotations with
type, voice, headVerbPos, headVerbString etc. fea-
tures and other annotations e.g. PP (prepositional
phrase), SUB (subject), OBJ (object).

An important annotation that makes rules more
general is Pair which annotates phrases that are
bounded by commas or brackets. With this anno-
tation, the following sentences:

[PP On [TIMEX3 Monday TIMEX3] PP] [NP the
company NP] [VG bought VG]
[PP In [TIMEX3 recent months TIMEX3] PP] [NP
a group of lenders NP] [Pair , led by Bank of Amer-
ica , Pair] [VG has extended VG]

could be covered by the following pattern:
{PP.hasAnno == TIMEX3}{NP}
({Pair})?{VG.type == FVG}

Every rule that has a non-empty pattern would post
at least one annotation covering the entire matched
phrase. Because rules in our knowledge base are
stored in an exception structure, we want to be able
to identify which annotations are posted by which
rule. To facilitate that, we number every rule and
enforce that all annotations posted by rule number
x have the prefix RDRx . Therefore, if a rule is an

89

exception of rule number x, it could use all annota-
tions with the prefix RDRx in its condition pattern.

Apart from the requirement that an annotation’s
feature must have a particular value, we define ex-
tra constraints on annotations namely hasAnno, has-
String, underAnno, endsWithAnno. For example,
hasAnno requires that the text covered by the an-
notation must contain another specified annotation:

NP.hasAnno == TIMEX3

only matches NP annotations that has a TIMEX3
annotation covering its substring. This is used, for
example, to differentiate a TIMEX3 in a noun group
from a TIMEX3 in a verb group.

Custom annotations: Users could form new
named lexicons during the knowledge acquisition
process. The system would then post a correspond-
ing annotation over every word in those lexicons.
Doing this makes the effort of generalizing the rule
quite easy and keeps the knowledge base compact.

4.3 The Knowledge Acquisition Process in
KAFTIE

The knowledge acquisition process goes through a
number of iterations. The user gives a text segment
(e.g. a sentence) as input to the KB. The conclusion
(e.g. classification) is suggested by the KB together
with the fired rule R that gives the conclusion. If it
is not the default rule, annotations posted by the rule
R are also shown (see section 6.3) to help the user
decide whether the conclusion is satisfactory.

If the user does not agree with the KB’s per-
formance, there are two options of addressing it:
adding an exception rule to rule R or modifying rule
R if possible. In either case, user’s decision will be
checked for consistency with the current KB before
it gets committed to the KB.

To create a new exception rule, the user only has
to consider why the current case should be given a
different conclusion from rule R. This effort does
not depend on the knowledge base size.

Modification of existing rules in the KB is not
normally done with RDR as it is viewed that every
rule entered to the KB has its reason for being there.
However, we find that in many natural language ap-
plications it is desirable to modify previously en-
tered rules to cover new cases.

To inspect results of a new exception rule or a
modified rule R, the user can inspect the annota-
tions posted by the rule of interest through a user
interface shown in figure 2.1 The user can quickly
check the impact of the rule on a document or even

1The interface design is inspired by Boguraev’s work.

Figure 2: Display of Concordance list to quickly in-
spect results of rules.

on the whole training corpus. If the corpus is anno-
tated, statistical performance of the rule will also be
collected. It is found that a good GUI is necessary
to productively create and test rules.
5 Implementation
We built our framework KAFTIE using GATE
(Cunningham et al., 2002). A set of reusable mod-
ules known as ANNIE is provided with GATE.
These are able to perform basic language process-
ing tasks such as POS tagging and semantic tagging.
We use Tokenizer, Sentence Splitter, Part-of-Speech
Tagger and Semantic Tagger processing resources
from ANNIE. Semantic Tagger is a JAPE finite state
transducer that annotate text based on JAPE gram-
mars. Our rule’s annotation pattern is implemented
as a JAPE grammar with extensions to enable extra
annotation feature constraints. We also developed
additional processing resources for our tasks:

Shallow Parser: a processing resource using
JAPE finite state transducer. The shallow parser
module consists of cascaded JAPE grammars rec-
ognizing noun groups, verb groups, propositional
phrases, different types of clauses, subjects and ob-
jects. These constituents are displayed hierarchi-
cally in a tree structure to help experts formulate
patterns, see e.g. Figure 3. The Shallow Parser
module could be refined as needed by modifying its
grammars.

All these processing resources are run on the
input text in a pipeline fashion. This is a pre-
processing step which produces all necessary anno-
tations before the knowledge base is applied on the
text.

6 Experiments
We build a knowledge base using KAFTIE to rec-
ognize TLINK relations between an EVENT and a
TIMEX3 using the TimeBank corpus.

90

Figure 3: The interface to enter a new rule where the
rule is automatically checked for consistency with
the existing KB before it gets committed. Annota-
tions including those created by the shallow parser
module are shown in the tree in the structure box.

6.1 The TimeBank corpus
The TimeBank corpus is marked up for tempo-
ral expressions, events and basic temporal relations
based on the specification of TimeML. Currently,
the TimeBank corpus has 186 documents.

Excluding TIMEX3 in document’s meta-data
(doc creation time), the majority of TLINKs is be-
tween EVENTs and TIMEX3s within the same sen-
tence. Hence, in all of our experiments, we focus on
recognizing intra-sentential temporal relations.

The TimeBank annotation guidelines suggest
distinctions among TLINK types between two
EVENTs but do not explicitly specify how those
types are different when it comes to relations be-
tween an EVENT and a TIMEX3. In fact, some
of the TLINKs types between an EVENT and a
TIMEX3 are hard to distinguish and a number of
cases inconsistency is observed in the corpus. In this
paper, we group similar types together: BEFORE
and IBEFORE are merged, AFTER and IAFTER
are merged and the rest is grouped into INCLUDES.

6.2 KAFTIE for extracting Temporal
Relations

For the task of extracting EVENT-TIMEX3 tem-
poral relations, we consider all pairs between an
EVENT and a TIMEX3 in the same sentence and
build a knowledge base to recognize their relations.
The sentence containing the pair is used as the input
to the knowledge base. As there could be more than
one EVENT or TIMEX3 in the same sentence, we
change the EVENT and the TIMEX3 annotations in
focus to EVENT I (instance) and TIMEX3 R (re-
lated to) annotations respectively. This enables our
rule’s pattern to uniquely refer to the pair’s argu-
ments. For each pair, the KB’s conclusion is the

type of its temporal relation if there exists a relation
between the pair’s arguments or NONE otherwise.

6.3 How to build a Knowledge Base
The following examples are taken from the actual
knowledge base (KB) discussed in section 6.4 and
shown in figure 1. Suppose we start with an empty
KB for recognizing temporal relations between an
EVENT and a TIMEX3 within the same sentence.
I.e. we would start with only a default rule that al-
ways produces a NONE conclusion. When the fol-
lowing sentence is encountered:

Imports of the types of watches
[VG [EVENT I totaled EVENT I] VG]
[PP about $37.3 million PP]
[PP in [NP [TIMEX3 R 1988 TIMEX3 R] NP]
PP], ...

our empty KB would use the default rule to suggest
the relation between EVENT I and TIMEX3 R is
NONE i.e. no relation exists. This can be corrected
by adding the following rule to the KB:

Rule 1:
(({VG.hasanno==EVENT I}):RDR1 vg1
({PP }?):RDR1 pp1
({PP.hasAnno == TIMEX3 R}):RDR1 pp2
):RDR1
Conclusion: INCLUDES

Each of the component in the rule’s pattern is auto-
matically assigned a tag which will effectively post
a new annotation over the matched token strings of
the component if the pattern matches a text. New
tags of rule i always start with RDRi . This rule
would match phrases starting with a VG annotation
which covers the EVENT I annotation, followed by
an optional PP annotation followed by a PP annota-
tion covering the TIMEX3 R annotation. When the
sentence containing the pair EVENT I-TIMEX3 R
is matched by this rule, the pair is deemed to be
of INCLUDES relation type. Once matched, new
annotations RDR1 vg1, RDR1 pp1 and RDR1 pp2
will be posted over the first VG, the first PP and the
last PP in the pattern respectively. This is to enable
exception rules to refer to the results of previously
matched rules. Notice here that the first PP compo-
nent is specified optional. It could be that the ex-
pert already anticipates future cases and make the
current rule more general. Alternatively, experts al-
ways have a choice of modifying existing rule to
cover new cases.2 When we encounter this pair:

The company’s shares
[RDR1 vg1 [VG are [EVENT I wallowing

2Automatic recommendation on which existing rules and
how to modify to cover new cases is reported in (Pham and
Hoffmann, 2005).

91

EVENT I] far VG] RDR1 vg1]
[RDR1 pp2 [PP below [NP their [TIMEX3 R
52-week TIMEX3 R] NP] PP] RDR1 pp2]
high....

Rule R1 fires and suggests that the pair has IN-
CLUDES relation with the newly posted annotation
highlighted in bold face. This is incorrect as there is
no relation between the pair. The following excep-
tion rule is added to fix the misclassification:

Rule 8:3

({RDR1 pp2,Token.string==below}):RDR8
Conclusion: NONE

This rule says that if the second PP matched by Rule
1 (RDR1 pp2) starts with a token string below then
there is no relation between the pair. Notice that the
sentence could have different PP annotations. As
each rule posts unique annotations over the matched
phrases, we can unambiguously refer to relevant an-
notations.

However, when we encounter the following case
It [RDR1 vg1 [VG is deeply [EVENT I discour-
aging EVENT I] VG] RDR1 vg1]
[RDR1 pp1 [PP for [NP the family NP] PP]
RDR1 pp1]
[RDR1 pp2 [PP after [NP [TIMEX3 R 22 months
TIMEX3 R] NP] PP] RDR1 pp2] but

This case will be classified as INCLUDES type by
Rule 1 while it should belong to AFTER type. We
can add an exception to Rule1 catering for this case:

Rule 196:
({RDR1 pp2,Token.string==after}):RDR196
Conclusion: AFTER

6.4 Experimental results
Out of 186 documents in the TimeBank corpus, we
randomly took half of that as training data and keep
the remaining half for testing. Using our KAFTIE
framework, we built a knowledge base of 229 rules
to recognize relations between an EVENT and a
TIMEX3 in the same sentence using the training
data.4 The knowledge base uses NONE as its de-
fault conclusion. In other words, by default and ini-
tially when the KB is empty, all EVENT-TIMEX3
pairs are deemed not to have any TLINK relations.
The overall results are shown in table 1 for two

3We only select some rules to show as examples, hence in-
dices of rules are not consecutive

4To evaluate the TLINK recognition task alone, we use
the EVENT and TIMEX3 annotations in the TimeBank cor-
pus. That would also enable us to make a fair comparison with
(Boguraev and Ando, 2005) as they also used perfect EVENT
and TIMEX3 annotations from TimeBank.

Methods 3 types w/o typing
F-m Acc. F-m Acc.

KAFTIE 71.3% 86.1% 75.4% 86.7%
J48 (5-folds) 62.3% 78.7% 66.4% 81.2%
SMO (5-folds) 61.4% 77.4% 63.1% 78.7%

Table 1: Results on recognizing TLINKs for w/o
typing and 3 types settings.

settings: 3 types (BEFORE, INCLUDES and AF-
TER see section 6.1) and without typing - collapsing
all TLINK types into one type, effectively detect-
ing if the pair has a TLINK relation regardless of
the type. While the accuracy reflects performance
on the test data across all types including NONE,
the F-measure is based on only TLINKs types, i.e.
excluding NONE.5 On the without typing setting,
the built knowledge base achieved an F-measure of
more than 75% and an accuracy of 86.7%.

Comparison with machine learning: For com-
parison with standard machine learning approaches,
we use Weka’s J48 and SMO (Witten and Frank,
2000) as implementations for C4.5 and support vec-
tor machine algorithms respectively. To adapt ma-
chine learning algorithms to the task of extract-
ing relations, we define the following feature rep-
resentation which is capable of capturing the rela-
tion arguments (EVENTs and TIMEX3s) and the
surrounding context. We break up the sentence
containing the EVENT-TIMEX3 pair into five seg-
ments namely: spans of the two arguments (EVENT
and TIMEX3), span between the two arguments
and spans to the left/right of the left/right argu-
ments. From each segment, we use token strings,
token lemmas, parts-of-speech, bigrams of parts-
of-speeches and all annotations from the Shallow
Parser as features.

J48 and SMO are run using 5-fold cross valida-
tion. As the result could vary depending on the seed
used for the cross validation, we report results aver-
aged over 100 runs with different random seeds.As
can be seen in table 1, the knowledge base built us-
ing our framework significantly outperforms stan-
dard J48 and SMO. In fact, our knowledge base with
the initial 60 rules (as the result of seeing roughly
60 TLINK pairs) already outperforms J48 and SMO
(see figure 4).

7 Reducing Knowledge Acquisition
In this section, we investigate how machine learning
could be used to reduce the knowledge acquisition

5The NONE type occurs approximately 2.5 times more of-
ten than the TLINK types.

92

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250
Number of rules

Rule Impact on test data

Precision
Recall

F-measure

Figure 4: Impact of incrementally adding rules to
the KB.

effort. A knowledge acquisition (KA) session corre-
sponds to the creation of a new rule as a result of the
KB performing incorrectly on a particular case. No-
tice that the KB’s default rule is quite simple. It al-
ways returns the default conclusion which is NONE
for the task of recognizing temporal relations. We
conjecture that if we start with a better default rule
then the number of knowledge acquisition sessions
can be reduced. One way of doing it is to take some
training data to train a classifier as the default rule.
We carry out the following experiment:

We focus on the task of recognizing temporal re-
lation in the without typing setting and use the exact
training and test data from the previous section to
build and test a KB respectively. The difference is
that we now split the training data into two parts i.e.
ML data and KB data. The ML data is used to train
a classifier as a default rule in a KB while the KB
data is used to add exception rules to the KB.

Instead of having real experts involved in the pro-
cess of creating exception rules, we simulate it by
consulting the KB built from the previous section,
called oracleKB. For each example in the KB data
that is misclassified by the current KB, we use the
fired rule for the example from the oracleKB i.e. the
rule that the oracleKB would use on the example.

Table 2 shows the results of using J48 and SMO
which are trained on varying portions of the train-
ing data. Specifically, it shows the f-measure of the
classifier alone, the KB with the classifier as the de-
fault rule on the test data as well as the number of
rules in the KB. The number of rules in the KB re-
flects the number of KA sessions required for build-
ing the KB. All figures are averaged over 20 differ-
ent runs using different seeds on splitting the train-
ing data into ML data and KB data.

As we increase the percentage of ML data, the
number of KA sessions required gets smaller. Ide-
ally, we want to minimize the number of KA ses-

sions while maximize the f-measure. At one ex-
treme end when the ML data is empty (0% of the
training data), we effectively rebuild a KB in the
same fashion as in the previous section with differ-
ent orders of examples. The f-measure of 75.1%
suggests that the performance of our approach are
independent of the order of examples presented to
the experts.

As it can be seen from table 2, the f-measures
of the KBs with a classifier as the default rule fol-
low the same trend. It first degrades as we start
giving some data to the classifier and improves as
more data is used to train the classifier. After certain
thresholds, the f-measures start degrading again as
we get less data for experts to add exception rules
while the classifiers do not improve their perfor-
mance.

Depending on the task and the classifier used, we
can choose an appropriate amount of data to train a
classifier as the default rule in order to substantially
reduce the number of KA sessions involved while
still achieve a reasonable performance. For exam-
ple with J48 the best performance is at 72.5% when
we use 60% of the training data for training J48 and
the rest to add exceptions rules. Compared to a fully
manual approach (using 0% data for the classifier),
we achieve a 60% reduction in the number KA ses-
sions.

As the oracleKB is built with the assumption that
the default rule always returns NONE, all of the ex-
ception rules at level 1 (exception rules of the de-
fault rule) are rules covering INCLUDES instances.
Even though rules at level 2 cover NONE instances,
they have limited scopes because they were created
as exceptions to level 1 rules. When the default
rule gives an incorrect INCLUDES conclusion, it is
likely that we would not be able to consult the or-
acleKB for an exception rule to fix this error.6 It
therefore suggests that if we use real experts, we
could achieve a better result.

8 Discussions and Conclusions
Among the pioneering works on linking time and
event expressions (Mani et al., 2003; Boguraev
and Ando, 2005), only (Boguraev and Ando, 2005)
reported results on publicly available data (Time-
Bank) which allows us to carry out performance
comparison.7 They use a robust risk minimization
classifier utilizing a complex set of features includ-
ing syntactic constructions derived from finite state

6A better simulation is to build another oracleKB with the
default rule always returning INCLUDES conclusion.

7To the best of our knowledge, this is the only work done on
TimeML compliant analyser using TimeBank corpus to date.

93

% j48 j48 #KA smo smo #KA
+kb +kb

0% 0 75.1 173 0 75.1 173
0.5% 28.4 66.4 146 27 68.6 151

1% 33.5 65.2 143 27.3 71.6 158
5% 45.3 67.2 138 54.3 71.9 142

10% 53.3 69 131 61.7 72.4 133
20% 62.9 72.3 117 64.3 72.7 118
30% 64.2 71.9 103 65.6 72.7 108
40% 66.6 71.9 91 66.1 72 93
50% 67.6 72.2 78 66.6 71.8 84
60% 68.5 72.5 65 67 71.7 70
70% 68.9 71.7 51 66.7 71 59
80% 69 71.3 38 66.3 70.2 44
90% 68 70.3 22 66 68.5 25

Table 2: Results of using j48/smo as the default rule
for KBs averaged over 20 different random seeds.
The first column is the percentage of the training
data used to train a classifier (j48/smo). j48 column
contains the f-measures of the classifier alone on the
test data. j48+kb column contains the f-measures of
the KB with j48 as the default rule on the test data
with the number of rules in the KB shown in column
#KA. The last three columns are similar for the smo
classifier.

analysis. We would assume that their features are
geared towards the task, and presumably took sub-
stantial time to develop. Our rules created by the ex-
perts use annotations generated by a shallow parser.
Importantly, our shallow parser is of a general pur-
pose nature and does not generate extensive clause
structures like in (Boguraev and Ando, 2005). In
fact, we reuse the shallow parser developed for a
different task in the technical papers domain (Pham
and Hoffmann, 2004) with minor modifications. It
indicates that our approach is not domain and task
dependent as rules are crafted based on annotations
generated by a general purpose shallow parser. It
can be seen from table 3 that the KB built using
our framework results in a better F-measure on all
3 settings of limiting the token distance between the
EVENT and TIMEX3.

It should be noted that we used only half of
the data for building the KB, while (Boguraev and
Ando, 2005) used 80% of the data for training. Fig-
ure 4 shows the performance of our knowledge base
on the test data as rules are incrementally added.
Given the upwards trend of the graph as more rules
are added, it is plausible that our KB would get to
even higher performance had we used 80% of the
available data for building the knowledge base.

We have shown that with our unconventional KA

Distance Method w/o typing
any KAFTIE 75.4%

Boguraev&Ando 74.8%
distance ≤ 16 tokens KAFTIE 77.2%

Boguraev&Ando 76.5%
distance ≤ 4 tokens KAFTIE 82.8%

Boguraev&Ando 81.8%

Table 3: Comparison with (Boguraev and Ando,
2005), who used 5-fold cross validation, i.e. 80%
of the data for training while we only used 50% of
the data to build the KB.

approach, namely RDR, we could quickly build a
knowledge base that performs better than existing
machine learning approaches while requiring much
less data. As demonstrated in section 7, the pro-
cess of building a KB can be boostraped by using
machine learning algorithms. Looking at this from
a different view, machine learning algorithms’ per-
formance can be improved by augmenting the KB
built in KAFTIE.

Independent of the knowledge base size, it took
7 minutes on average to create one rule. This in-
cludes the time needed to read the sentence to un-
derstand why there is a certain relation between the
pair of an EVENT and a TIMEX3 as well as the
time required to test the new rule before committed
to the KB. If the users have to classify the pair’s re-
lation from scratch, when we do not have annotated
data, then the actual time spent on creating a rule
would be much less, as understanding the sentence
takes most of the time. Importantly, we do not need
to spend time engineering the features representa-
tion/selection for the task at hand which is usually
done in machine learning approaches.

Thus our approach is particularly suitable for new
tasks, when annotated data is not available or lim-
ited. Annotators could use KAFTIE to build an an-
notated corpus as well as a classifier at the same
time. By requiring users to justify, in the form
of rules, their decisions every time they annotate
a case, it helps to annotate the corpus consistently.
Furthermore, it also bootstraps the whole process as
shown in section 6.4: after looking at half of the
data to build a KB, the KB’s accuracy on the other
unseen half of the data is 86.7% in the ‘without typ-
ing’ setting.

References
Branimir Boguraev and Rie Kubota Ando. 2005.

TimeML-compliant text analysis for temporal
reasoning. In Proceedings of IJCAI, UK.

Paul Compton and R. Jansen. 1990. A philosoph-

94

ical basis for knowledge acquisition. Knowledge
Acquisition, 2:241–257.

Hamish Cunningham, Diana Maynard, Kalina
Bontcheva, and Valentin Tablan. 2002. Gate: An
architecture for development of robust hlt appli-
cations. In Proceedings of the 40th Annual Meet-
ing of the Association for Computational Linguis-
tics(ACL), Philadelphia, PA.

G. Edwards, P. Compton, R. Malor, A. Srinivasan,
and L. Lazarus. 1993. PEIRS: a pathologist
maintained expert system for the interpretation of
chemical pathology reports. Pathology, 25:27–
34.

Lisa Ferro, Inderjeet Mani, Beth Sundheim, and
George Wilson. 2001. TIDES temporal annota-
tion guidelines, MTR 01W0000041 MITRE tech-
nical report.

Richard Fikes, Jessica Jenkins, and Gleb Frank.
2003. JTP: A system architecture and component
library for hydbrid reasoning. In Proceedings
of the 7th World Multiconference on Systemics,
Cybernetics and Informatics, Orlando Florida,
USA.

Elena Filatova and Eduard Hovy. 2001. Assign-
ing time-stamps to event-clauses. In Proceedings
of the 10th Conference of the EACL, Toulouse,
France.

Inderjeet Mani and George Wilson. 2000. Robust
temporal processing of news. In Proceedings of
the 38th annual meetings of the ACL, Hong Kong.

Inderjeet Mani, Barry Schiffmann, and Jianping
Zhang. 2003. Inferring temporal ordering of
events in news. In Proceedings of the NAACL,
Edmonton, Canada.

Son Bao Pham and Achim Hoffmann. 2004. Ex-
tracting positive attributions from scientific pa-
pers. In 7th International Conference on Discov-
ery Science, Italy.

Son Bao Pham and Achim Hoffmann. 2005. In-
telligent support for building knowledge bases
for natural language processing. In Workshop
on Perspective of Intelligent System Assistance,
Palmerston North, New Zealand.

J. Pustejovsky, J. Castano, R. Ingria, R. Sauri,
R. Gaizauskas, A. Setzer, G. Katz, and D. Radev.
2003. TimeML: Robust specification of event
and temporal expressions in text. In AAAI Spring
Symposium on New Directions in Question An-
swering., Standford, CA.

A. Setzer and R. Gaizauskas. 2001. A pilot study
on annotating temporal relations in text. In Work-
shop on temporal and spatial information pro-
cessing, ACL, Toulouse.

Ian H. Witten and Eibe Frank. 2000. Data Mining:

Practical machine learning tools with Java im-
plementations. Morgan Kaufmann.

95

	Dual-Type Automatic Speech Recogniser Designs for Spoken Dialogue Systems

