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Abstract

We investigate the impact of introducing finer dis-
tinctions into the tagset on the accuracy of part-
of-speech tagging. This is a tangential approach to
most recent research in the field, which has focussed
on applying different algorithms using a very simi-
lar set of features. We outline the basic approach
to tagset refinement and describe preliminary find-
ings.

1 Introduction

Most recent research on corpus-based part-of-
speech (POS) tagging has tended to focus on
applying new algorithms to an existing task
(Brill, 1995; Ratnaparkhi, 1996; Giménez and
Màrquez, 2004), or improving the efficiency of
an existing algorithm (Ngai and Florian, 2001).
While there has been some successful experi-
mentation with modifying the feature sets of
particular taggers (Toutanova and Manning,
2000), the various state-of-the-art taggers for
the most part use a very similar set of features
in determining the tag for a particular token:
some subset of the two preceding and two fol-
lowing tokens, and their tags. The different al-
gorithms have tended to plateau to a similar
“glass ceiling” in accuracy (96.9± 0.3% over all
tokens for the taggers in this paper) by using
these features.

POS tagging is essentially an optimisation
process over firstly the tag sequence and sec-
ondly the tag–word assignments for a given in-
put. The relative difficulty of this task hinges
on the internals of the POS tagset, and the tag-
ging performance over a given dataset can vary
greatly depending on the tagset used. In this
paper, we seek to enhance tagging performance
by adding a third dimension to the optimisation
process: the tagset. We explore the possibility
of transforming the tagset via reversible (loss-
less) mappings, to produce a dataset which is
more amenable to automatic tagging and thus

results in higher performance than the origi-
nal tagset. We follow the majority of recent
mainstream research on English POS tagging
in adopting as a baseline the tagset used in the
Penn Treebank (Marcus et al., 1993).

We evaluate two different approaches to iden-
tifying patterns of syntactic regularity with the
existing POSs. Our primary approach is lin-
guistic insight: we investigate a range of linguis-
tically motivated subdivisions which are either
designed to assist in a specific problematic in-
stance of disambiguation, or are linguistically
sensible enough to be applied for independent
reasons. Additionally we compare this with
a data-driven approach, where we attempt to
identify intra-POS groupings by running a clus-
tering algorithm over the words within a partic-
ular class using features derived from syntactic
context. We report the most promising results
achieved in both cases.

Section 2 outlines some diverse algorithms
which have been applied to POS tagging; Sec-
tion 3 gives some motivation for attempting in-
creases in accuracy; Section 4 describes details
of the tagset used in the Penn Treebank; Sec-
tion 5 outlines our method; in Section 6 we show
results for various strategies and in Section 7 we
discuss further work.

2 Tagging Algorithms

A large number of algorithms have been applied
to POS tagging; a brief treatment of those which
are relevant follows.

2.1 Transformation-Based POS tagging
The transformation-based learning (TBL)
paradigm as applied to POS tagging was
first described in Brill (1995); like all of the
taggers described here it is a corpus-based
method. In the learning phase, a TBL tagger
assigns each word the most-likely unigram tag
from the training data, and generates a large
set of possible transformational rules which
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map the unigram tagger assignments onto the
gold-standard assignments, conditioned on
contextual word and tag features. It iteratively
selects from these the rule which minimizes
the number of errors, and applies that rule to
modify the assigned tags. The output is an
ordered list of rules which can then be applied,
in combination with the learned unigram tag
probabilities, to unseen data.

The TBL implementation used here is
fnTBL 1.1 (Ngai and Florian, 2001); it is equiv-
alent in power to Brill’s original but runs two
orders of magnitude faster due to optimisa-
tions which are not relevant here. The reported
accuracy in Brill (1995) was 96.6%/81.2% for
known/unknown words using 1M words of the
Penn Treebank WSJ Corpus as training data
and 200K words as test data.

2.2 Maximum Entropy POS tagging
The maximum entropy framework is a prob-
abilistic approach to NLP commonly used for
classification tasks including POS tagging. The
approach was applied specifically to POS tag-
ging in Ratnaparkhi (1996). The underlying
principle is that when choosing between a num-
ber of different probabilistic models for a set
of data, the most valid model is the one which
makes fewest arbitrary assumptions about the
nature of the data.

The probabilistic information in this case
comes from a set of binary-valued features
which in Ratnaparkhi (1996) are dependent
solely on local contextual features: the cur-
rent word and the two words on either side,
and the two preceding tags. In Toutanova
and Manning (2000) a number of other hand-
tuned features derived from a larger context
window are added to assist in disambiguation
in problematic words, and activated only upon
the occurrence of such words. These optimisa-
tions bring the accuracy from the baseline for
all/unknown words of 96.76%/84.5% (using a
subset of the feaures in Ratnaparkhi (1996)) to
96.86%/86.91%.

2.3 SVM POS tagging
Support vector machines (SVMs) have been ap-
plied to POS tagging in Giménez and Màrquez
(2004), inter alia. The features are parallel to
those used in a maximum entropy model: a set
of binary features conditioned on the presence of
words and tags within a local context window.
These features are then used to build an SVM
for each part of speech which contains ambigu-

ous lexical items (reportedly 34 for the Penn
Treebank WSJ corpus), and in the classifica-
tion stage, the most confident prediction from
all of the SVMs is selected as the tag for the
word. The accuracy reported is 97.16%/89.01%
for all/unknown words.

3 Motivation

As noted in Garside et al. (1997), the linguis-
tic quality of a tagset is determined by the ex-
tent to which each tag denotes a set of words
with a unique set of common syntactic proper-
ties, while the computational tractability of it is
determined by the ease with which the tag for
a particular token can be determined, and how
much each tag aids in the disambiguation of sur-
rounding words. The extreme cases of tagsets
with either one tag per word or one tag for all
words, are examples of tagsets which are highly
tractable in computational terms, but of very
little use linguistically, which perhaps serves to
indicate that these requirements sometimes con-
flict. However, the aim here is to test whether
there is always an inverse relationship between
the two. A tagset which encodes more sub-
tle distinctions is almost inevitably more use-
ful in linguistic terms unless the additional dis-
tinctions are entirely random; here we will test
whether the accuracy can be increased by cer-
tain carefully selected tagset subdivisions moti-
vated by linguistic intuition.

Indeed, in Klein and Manning (2003) it was
demonstrated that a finer-grained set of cate-
gory labels can markedly improve performance
in the related application of parsing, by pro-
viding more contextual information upon which
to base decisions in cases of ambiguity. This,
along with the demonstration by Toutanova and
Manning (2000) that there is potential to im-
prove POS tagging performance by adding lin-
guistically motivated features to the tagger sug-
gests that it may be possible to apply an anal-
ogous version of Klein and Manning’s method
to POS tagging. If we alter the tagset to en-
code more subtle distinctions within the word
classes, these new divisions could potentially
increase the computational tractability of the
tagset and hence improve the performance of
the tagger, since subtler distinctions can pro-
vide more useful information to disambiguate
surrounding words.

It is worth addressing the question here of
why it is worth striving for a small performance
improvement here. By NLP standards, accu-
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racy of ∼97.0% seems astoundingly high, beg-
ging the question of whether there is any point
in attempting to raise this figure by a few frac-
tions of a percent. However, according to word-
by-word evaluation metrics, POS tagging is ac-
tually quite a simple task – as noted by Char-
niak et al. (1993), the unigram-based most-
likely tag (MLT) baseline for the task is around
91%.

The problem is POS tagging is generally a
pre-processing phase in NLP, which acts as in-
put to a second stage such as sentence-level
parsing. If we look at sentence-level accuracy
i.e. the proportion of sentences in which all to-
kens are correctly tagged, the POS tagging task
seems harder – with an average sentence length
of ∼24 words and assuming errors occur inde-
pendently we would expect a tagger which gives
97% accuracy over word tokens to achieve 49%
at the sentence level, while a tagger performing
at 98% should tag 62% of sentences correctly.

4 The Penn Treebank Tagset

The tagset for the Penn Treebank is based on
the tagset used for the original Brown corpus
(Francis and Kučera, 1979) but at 36 tags (ex-
cluding punctuation), it is small in comparison
to both the Brown tagset (75 non-compounded
tags1), and other related tagsets. This was
a deliberate design decision, in that Marcus
et al. (1993) set out to create “A Simpli-
fied POS Tagset for English” to alleviate prob-
lems of sparse data in stochastic applications
– thus increasing the computational tractabil-
ity of the tagset. The primary means by which
they achieved this simplification was with by
applying the notion of ‘recoverability’: if the
distinctions between several tags could be re-
covered from either syntactic information (avail-
able from the parse tree annotations) or lexical
information (the character string making up the
word), the tags could be conflated.

The avoidance of lexically recoverable distinc-
tions means that classes with just a single lex-
ical item are dispreferred – hence, for example,
the abandonment of the explicit POS distinc-
tion between auxiliary verbs and content verbs
which is made in most other tagsets derived
from the Brown tagset (Francis and Kučera,
1979; Garside et al., 1987; Garside et al., 1997).
Additionally the presence of syntactic informa-

1For comparison with the Penn Treebank, where the
’s suffix is split from the host noun, this figure excludes
12 possesive variants of other tags such as NN$

tion means that the traditional distinction be-
tween prepositions and subordinating conjunc-
tions can be removed as it can be recovered from
the phrasal category of the sibling (SBAR for a
subordinating conjunction and NP for a prepo-
sition).

However Marcus et al. (1993, p315) stress
that all of this information is available to users
of the corpus via additional sources:

...the lexical and syntactic recoverabil-
ity inherent in the POS-tagged ver-
sion of the Penn Treebank corpus al-
lows end users to employ a much richer
tagset than the small one described ...
if the need arises.

What is interesting here is that the tagset was
not designed to differentiate all possible distri-
butional differences when other information is
available, but in examples of POS tagging in the
literature, the tagset is invariably used in unal-
tered form despite the tagger having no explicit
access to the syntactic information required to
recover sub-usages of a given tag.

The lexical information is used, albeit im-
plicitly, by the inclusion of lexicalised features
in all of the state-of-the-art taggers mentioned
here. Ironically, the Penn Treebank tagset
was designed to be coarse to avoid problems
of data sparseness, and yet it is this coarse-
ness which contributes to the inevitable inclu-
sion of sparsely-populated lexicalised features to
achieve high accuracy. While there have been
examples of certain ad hoc modifications, Man-
ning and Schütze (1999) note that a systematic
study into the effect of the tagset has not been
explored. It seems the possibility of making ex-
plicit certain syntactic regularities within the
coarse Penn Treebank word classes for the pur-
poses of improving performance in POS tagging
is one worth investigating.

5 Method

We wish to investigate here whether we can im-
prove performance by helping the tagger make
syntactic generalisations which are not appar-
ent either from the coarse POS tags or from
the sparsely populated lexical feature vector.
Subdividing the tags in a linguistically sensible
way should hopefully provide this information.
However the presence of additional POSs clearly
has the potential to make the POS tagging task
more difficult. Thus, as shown in Figure 1, we
will map the tag of each token in the training
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Figure 1: The experimental architecture

data appropriately to a particular new version
of the tagset, run the trained tagger over a test
corpus, and for purposes of comparison map
the finer-grained POS-tags back to the original
Penn Treebank tags before evaluating perfor-
mance. This method means that any increased
linguistic utility of the mapped tags is discarded
before evaluation, but for the purposes of this
experiment the linguistic utility is a means for
improving tagger performance rather than an
end in itself.

To facilitate the final stage of mapping the
tags back to original Penn tags, we place cer-
tain restrictions on allowable modifications: the
mapping function must be either be injective
from the old to the new tags, or any distinctions
which are collapsed must be unambiguously re-
coverable from the wordform so the equivalent
tags from the original tagset can be determined
reliably.

Our tag-mapping module enables any subset
of POS tag assignments to be translated using a
conjunctive or disjunctive combination of lexi-
cal and syntactic features. Syntactic features in-
clude the two surrounding tags, and the phrasal
categories of nearby nodes (as defined within
the treebank annotation): parent, grandparent,
immediately preceding or following siblings, or
all preceding or following siblings.

Initial experiments suggested that the
marginality of the performance improvements
we were aiming for over the data meant that
there was a risk of overfitting – even with 200K

words of test data, a global change of 0.05%
corresponds to only 100 words, or much less
over a specific POS; additionally, the inter-
annotator discrepancies noted in Ratnaparkhi
(1996) are likely to swamp any corpus-wide
generalisations. To alleviate this, we used
five-fold cross-validation over sections 00-22
of the Penn Treebank WSJ corpus, effectively
producing a development set of ∼1M words.
Rather than split the data by sections, the
data partitions were constructed by placing
one sentence from every five in each partition.
This tends to inflate performance figures,
however this is not a problem here since we are
purely looking for improvements relative to the
benchmark.

We selected fnTBL (Ngai and Florian, 2001)
as our first stage prototyping tool for a set
of tagset modifications, as it can complete a
five-fold cross-validation test-cycle in under two
hours. Any modification which had a large neg-
ative impact on performance at this stage was
generally not investigated further, since the tag-
gers use a similar set of features, and we were at-
tempting to find universally useful distinctions.
The SVM tagger SVMTool 1.2.2 (Giménez and
Màrquez, 2004), with a turnaround of under
seven hours, was used in subsequent experimen-
tation. Only the Stanford NLP Maximum En-
tropy tagger (Toutanova and Manning, 2000)
had a prohibitive training time, so for practical
reasons was used minimally, for benchmarking
and later-stage testing.
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5.1 Evaluation Metrics

We evaluate the results using several evalua-
tion metrics. First, for comparison with previ-
ous work we use the global token-level accuracy
metric since it is the most widely-used metric in
tagging research. The token-level accuracy over
unknown words (i.e. those which did not appear
in the training data) is also crucial since this is a
major source of tagging errors – in our baseline
with an unmodified tagset, just 2.4% of the to-
kens in the training data were unknown but they
contributed 11-13% of errors. Additionally, we
show sentence-level accuracy, and precision, re-
call and F-score over individual POSs.

5.2 Sources of modified tagsets

The primary goal here is to apply linguistic in-
tuition to the task of tagset modification. Po-
tential modifications were drawn from a number
of sources, including grammars of English (such
as Huddleston and Pullum (2002)) and alterna-
tive tagsets, such as CLAWS7 (Garside et al.,
1997), and evaluated empirically.

An alternative line of investigation was more
data-driven: we investigated whether in a sepa-
rate stage to training the taggers, we could use
machine learning techniques to determine useful
subdivisions in the tagsets. To this end, we de-
fined a range of features which could help in de-
termining patterns of syntactic regularity. Some
of the features were syntactic, often correspond-
ing to layers of annotation used in Klein and
Manning (2003): phrasal categories of the par-
ent, grandparent, left sibling and right sibling,
and binary-valued features for whether a given
preterminal corresponds to a phrasal head, or
whether it is the only element in its phrase.
There were also a set of collocational features
corresponding more closely to the features avail-
able to the tagger, based on the two preceding
and two following POSs.

The nominal values of each feature were
extracted for each token in the train-
ing/development data then conflated by
word type and converted into a frequency
distribution across the possible feature values
for each word type. The value distribution for
each feature with n non-zero values was then
converted into a set of n real-valued features
for the word type using maximum likelihood
estimation. This method of combining feature
values is not ideal but was the most principled
way we could find of capturing a large amount
of distributional information manageably.

These feature values were then used as in-
put for the implementation of the EM algo-
rithm in the Weka toolkit (Witten and Frank,
2000). Several different combinations of fea-
tures were used; broadly, they were syntactic-
only, collocational-only and both.

6 Results

6.1 Baseline and Benchmark

The benchmark results from running each of
the publicly available taggers with the default
or recommended parameter settings are shown
in Table 1, with results over specific POSs in
Table 2. For a point of comparison, we also ap-
plied a suite of naively conceived modifications
to illustrate the effects of data sparseness. The
idea is borrowed from POS induction, which
involves determining word clusters (i.e. POSs)
from unannotated data. The task here is sim-
ilar except that we are looking for patterns of
regularity within a particular POS, so the base-
line used in Clark (2003) may be informative.
To subdivide a part of speech into n subclasses,
we assign each of the (n − 1) most frequently
seen word tokens from the class into (n − 1)
separate new classes and the remainder to a fi-
nal subclass. In Table 3, we present the results
for n = 2, 3, 4 over closed-class POSs of reason-
able size, after training and tagging with fnTBL
using the same broad indicators shown in Ta-
ble 1. The best-performing modification from
this selection, (i.e. for subdividing PRP, with
n = 1) was additionally tested using SVMTool
and the Stanford MaxEnt Tagger; these results
are shown in Table 1.

6.2 Linguistically Motivated
Modifications

We present here the results for a selection of lin-
guistically motivated modifications which were
most successful or most motivated from a the-
oretical point of view. One obvious candidate
modification is reversing the idiosyncratic con-
flation of prepositions and subordinating con-
junctions in the Penn Treebank. This could
have been achieved lexically, by extracting a list
of lexemes which frequently act as subordina-
tors in the training data, and mapping the tags
of the tokens accordingly. However, the most
successful and principled approach was using
syntactic features for each token and thus de-
ciding on a word-by-word basis. This captures
the fact that there are certain words such as be-
fore that are ambiguous between the two; we let
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TBL SVM MaxEnt
All Unk Sent All Unk Sent All Unk Sent

Benchmark 96.842 81.94 51.77 96.852 84.62 50.72 97.056 87.34 53.72
Freq-based PRP:2 96.839 81.81 51.69 96.851 84.60 50.67 97.048 87.40 53.51
Freq-based RB:3 96.843 81.73 51.72 96.855 84.67 50.71 97.056 87.28 53.72
Clust: in, All 96.831 81.79 51.52 96.865 84.64 50.90 97.065 87.32 53.78
Clust: in, Coll 96.850 82.00 51.82 96.855 84.61 50.74 97.050 87.32 53.59
Ling: in—sub 96.842 81.76 51.63 96.855 84.65 50.77 97.050 87.37 53.51
Ling: rb–deg 96.818 81.66 51.69 96.847 84.72 50.63 – – –
Ling: in—rp 96.832 81.59 51.51 96.851 84.63 50.73 – – –

Table 1: Accuracy (%) of the best-performing or most motivated tag modifications for each of the broad
methods discussed using five-fold cross-validation over sections 0–22 of the WSJ corpus, with the highest
accuracy figure in each column in bold

TBL SVM
All Unk All Unk

JJ 91.66 76.01 92.22 80.84
JJR 87.55 34.86 88.41 41.44
JJS 93.26 73.87 95.46 70.33

NNPS 65.6 20.78 62.62 19.65
RBR 70.47 – 71.86 –
RBS 78.55 – 86.04 –
VBD 95.06 72.25 95.46 75.25
VBP 92.97 55.46 93.06 44.44

Table 2: Benchmark F-Score (%) over 1,047K words
of text, for selected POSs

the tagger resolve this ambiguity as appropriate.
Two syntactic features were used to determine
if a given IN token is a subordinating conjunc-
tion (preposition being the default): an SBAR
parent node or an S immediate right sibling.

The results for SVMtool showed very few dif-
ferences for recall and precision over individual
POSs compared to the benchmark: the largest
change was a 2% relative increase in F-score
over unknown VBPs (verb, present tense, non
third person singular) and a 3% relative increase
for unknown JJRs (comparative adjective). The
results for fnTBL in comparison were more var-
ied, with a 7% increase in F-score over known
members of RBS (superlative adverb), and for
unknown words, an 8% decrease for VBPs and
a 5% increase for JJRs. The changes in JJR
are probably due to than, which often occurs in
their vicinity (e.g. higher than) and is usually a
preposition by our definition but tends to occur
in different contexts to subordinating conjunc-
tions such as because. The other differences are
harder to account for, and are perhaps unpre-

dictable outcomes due to data sparseness.

Another candidate modification is based on
the observation that in the baseline taggers,
5.8-6.4% of tagging errors were due to a gold-
standard JJ (adjective) being tagged VBN
(verb past participle) or vice versa, with a fur-
ther 1.9-2.0% of errors due to the correspond-
ing JJ/VBG (verb present participle) confu-
sion. This distinction is notoriously difficult to
make, but we should be able to assist in dis-
crimination by utilising the linguistic tests dis-
tinguishing between the two: adjectives can be
modified by degree adverbs such as very, while
verbs cannot. Thus, the presence of a degree
adverb should indicate unequivocally that the
head word is an adjective. In reality there is
no clear boundary between degree adverbs and
the more common verb-modifying adverbs, and
empirically the most effective approach, as with
the in–sub modification, was to allow ambigu-
ity of degree adverb membership and condition
the tag mapping on syntactic features for each
token: an RB with either an RB or JJ as its
right sibling, or an ADJP (adjective phrase) as
parent was mapped as a degree adverb. This
modification is denoted rb–deg in Table 1.

Compared to the benchmark, the results for
SVMtool were again reasonably similar to the
baseline, with the only significant differences in
F-score being over unknown words: increases of
2% for JJS and VBP, and 3% for VBD which
were offset by decreases of 7% for JJR. fnTBL
over known words gave a 33% relative decrease
in F-score for members of RBS, and a 5% de-
crease for JJS (superlative adjective), while over
unknown words the largest changes in F-score
were a 54% increase for NNPS, a 3% increase
for VBP, as well as a 6% decrease for JJR. The
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POS IN DT PRP
n 2 3 4 2 3 4 2 3 4

All Tokens 96.823 96.817 96.819 96.806 96.813 96.806 96.839 96.830 96.838
Unknown 81.40 81.78 81.57 81.61 81.78 81.64 81.81 81.95 81.71
Sentences 51.41 51.28 51.55 51.13 51.38 51.28 51.69 51.57 51.60

Table 3: Overall accuracy (%) with naively subdivided POSs using fnTBL

TBL SVM MaxEnt
All Unk Sent All Unk Sent All Unk Sent

Benchmark 96.68 83.71 49.52 96.75 87.23 49.76 96.99 88.50 52.92
Clust in, All 96.68 83.59 49.91 96.78 87.38 50.04 96.990 88.47 52.88
in–sub 96.70 84.07 50.00 96.77 87.32 49.94 96.971 88.29 52.70
vb–inf 96.73 84.10 49.94 96.75 87.26 49.74 – – –

Table 4: Accuracy (%) of selected tag modifications from Table 1 over the held-out 129K-token test set of
sections 22 and 23 of the WSJ corpus with sections 0–22 as training data

RBS/JJS differences are probably due to con-
fusions between each other for most which is of-
ten ambiguous when preceding prenominal ad-
jective phrases (e.g. the most ethical policies),
and RB-DEGs which occur in such ADJPs lead
to spurious generalisations. The differences over
unknown JJR are probably due to ‘degree ad-
verbs’ (by our syntactic criteria) such as much
which modify comparative ADJPs and operate
quite differently to words such as very. Again,
we must assume some changes are due to un-
predictable data sparseness.

A further round of tests was designed to in-
crease computational tractability with little ref-
erence to linguistic motivation. It concerns
the ambiguity between IN and RP (particle).
Again, these POSs are notoriously difficult to
distinguish between, since many words such as
on are systematically ambiguous between the
two. However, there are many members of IN
which have no homographs in the RP class. If
we map the ambiguous members of IN to a new
class, we are explicitly indicating to the tagger
whether or not a word is ambiguous between the
two POSs and could improve performance for
these particular words. Interestingly, this mod-
ification, denoted in–rp, achieved better per-
formance when applied in conjunction with the
in–sub modification mentioned (96.832% accu-
racy over all tokens) above than when it was
used alone (96.818% over all tokens).

Various other modifications included retag-
ging verbs based on their likely complements
(e.g. if its complement is likely to include a par-
ticle, bare infinitive or noun phrase), and sev-

eral sets of modifications for adverbs, including
locative adverbs and those homographic with
prepositions. Resultant accuracy using fnTBL
ranged from roughly equal to the reported fig-
ures to 0.3% below them.

6.3 Intra-POS Clustering Modifications

After running the clustering algorithms with
different feature sets as input, we selected a
large range of promising sets of POS clus-
ters with a qualitative examination of the clus-
tering output, then starting with fnTBL we
successively narrowed down the set of clus-
ters tested with each algorithm by select-
ing the more successful modifications for the
next stage (SVMTool), until finally testing the
best-performing modification with the Stanford
Maximum Entropy Tagger.

The best performing modification came from
using all of the syntactic and collocational fea-
tures mentioned and resulted in splitting IN
into four subclasses, corresponding roughly to
transitive prepositions (this however included
some types such as before which can be used
as subordinators), rare prepositions, subordina-
tors and a cluster containing only than. We
also show results for another effective cluster-
ing, which again dealt with IN using only col-
locational features. The clusters here do not
show such a discernible pattern. In both cases,
but particularly the latter, we suspect overfit-
ting due to the fact that the statistics for clus-
tering were derived from the entire combined
training/development set.
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6.4 Final Testing
To evaluate the validity of our suspicions of
overfitting by the clustering algorithm we also
show in Table 4 a final round of testing using
sections 0-21 as training data and sections 22-
23 (which had been held out until this point
and were not used to generate clusters) as a
test set. This also facilated comparison be-
tween the linguistically motivated modifications
and the clustering modifications. We would
expect the linguistically motivated modifica-
tions, which were generated in a fairly data-
independent manner (apart from the selection
of different modifications on the basis of per-
formance over the development set) to display
more consistent improvments over held-out data
than the data-driven clusters.

7 Discussion

It is clear from the results shown here2 that
to an extent the intuitions of Marcus et al.
(1993) about data sparseness were justified. Ta-
ble 3 shows that coming up with a modifica-
tion which reduces performance is easy; we have
demonstrated here that finding a set of non-
detrimental modifications is difficult. There are
probably several reasons for this. It is the most
difficult 3% of tokens which we are attempt-
ing to tag correctly. Among these are words
which probably cannot be tagged correctly with
a small context window, words for which hu-
mans would have difficulty agreeing on a tag,
and words which are tagged incorrectly in the
gold standard (a fact which was explored in Rat-
naparkhi (1996)).

However despite this, there are still reasons to
believe that there is room for improvement. As
noted in Brill and Wu (1998), there is high de-
gree of complementarity in errors made by max-
imum entropy and TBL-based taggers (among
others), suggesting that even though these tag-
gers use similar contextual features, the differ-
ences in the way these features are combined
result in errors over different words. This tends
to imply that at least some of the time, there
is sufficient information available, but that the
different underlying algorithms fail to apply it
correctly in all cases.

Given this, the lack of success so far in apply-
ing linguistic intuition was surprising. While
the highest-performing modification was the

2For a more extensive set of results which support the
same conclusion, as well as a more detailed discussion of
methodology, see MacKinlay (2005)

linguistically-motivated reintroduction of sub-
ordinators, accuracy in this best case was not
significantly different from using an unmodified
tagset. However the worst of the linguistically
motivated modifications resulted in markedly
lower accuracy than the benchmark. Even mod-
ifications targeted at addressing a specific con-
fusion (such as rb–deg) actually reduced per-
formance. Additionally, most of these linguis-
tic modifications were outperformed by the best
naive frequency-based approach.

The clustering was not designed on a par-
ticularly firm theoretical basis; rather, we at-
tempted it as a comparison with the linguis-
tically motivated methods. Despite this, it
has produced some intra-POS clusters which
(slightly) improve performance, however some
of this may be due to overfitting. The perfor-
mance over the test set, at least for SVMTool,
could be seen to support the validity of the re-
sult. However examining the output from all
three taggers together shows there is very little
evidence of consistent improvement from any
individual mapping. While they can produce
slight improvements for certain taggers in cer-
tain cases, these improvements are not signifi-
cant, and there is little firm evidence on the ba-
sis of this experiment for the significant utility of
either the data-driven or linguistic approaches.

It is apparent from Table 1 that the best re-
sults from various methods seem to asymptote
towards the benchmark using the unmodified
tagset, which is indicative of the inherent dif-
ficulty of the task. Even when we make justi-
fiable modifications, the increased data sparse-
ness usually results in a net performance de-
crease. While we would not rule out improved
results from this line of experimentation, it is
likely at least that some variation on the strat-
egy will be necessary for an appreciable incre-
ment in tagging accuracy.

Possible further strategies we plan to inves-
tigate include adding a two-tiered classification
system, by systematically adding delimiters to
newly created tags, and adding contextual fea-
tures dependent on the portion of the POS
tag preceding or following the delimiter. Mul-
tiple levels of classification of POS tags are
used successfully in the jaws tagging system
(Garside et al., 1997) but do not appear to
have been applied to the the Penn Treebank.
This method would give the taggers access to
the more densely populated coarse-tag features
when necessary, but when the subtler distinc-
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tions we have added are useful the taggers can
utilise them. This is of course a question requir-
ing further experimentation.
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