
Proceedings of the Australasian Language Technology Workshop 2005, pages 7–14,
Sydney, Australia, December 2005.

Disambiguating Conjunctions in Named Entities

Pawe l MAZUR
Institute of Applied Informatics

Wroc law University of Technology
Wyb. Wyspiańskiego 27

50-370 Wroc law,
Poland

Pawel.Mazur@pwr.wroc.pl

Robert DALE
Centre for Language Technology

Macquarie University
NSW 2109,

Sydney,
Australia

Robert.Dale@mq.edu.au

Abstract

The recognition of named entities is now a well-
developed area, with a range of symbolic and
machine learning techniques that deliver high
accuracy identification and categorisation of a
variety of entity types. However, there are
still some named entity phenomena that present
problems for existing techniques; in particular,
relatively little work has explored the disam-
biguation of conjunctions appearing in candi-
date named entity strings. We demonstrate
that there are in fact four distinct uses of con-
junctions in the context of named entities; we
present the results of some experiments using
machine-learned classifiers to disambiguate the
different uses of the conjunction, with 81.73% of
test examples being correctly classified. We pro-
vide some discussion and analysis of the prob-
lem of conjunction in named entities, and we
show that there are some cases which are am-
biguous even for humans.

1 Introduction

Initially developed as a component task in infor-
mation extraction (see, for example, (Grishman
and Sundheim, 1996)), named entity recogni-
tion, whereby entities such as people, organi-
zations and geographic locations are identified
and tracked in texts, has become an important
part of other natural language processing appli-
cations such as question answering, text sum-
marisation and machine translation.

Named entity recognition consists of both
identifying those strings in a text that corre-
spond to named entities, and then classifying
each such named entity string as being of a spe-
cific type, with typical categories being Com-
pany, Person and Location. Sometimes an ad-
ditional step is introduced for coreference res-
olution, which establishes whether two named
entities in a given document refer to the same
(either physical or abstract) object; so, for ex-
ample, we might determine that the named en-

tity International Business Machines Corpora-
tion has the same real world referent as both
IBM and Big Blue. We can go further and de-
termine whether named entities in separate doc-
uments (hence, cross-document coreference res-
olution) refer to the same entities (see (Bagga,
2004)), although this is a much less explored
area.

All of the above assumes that identifying in-
dividual named entities in text is a relatively
straightforward and well-defined task. How-
ever, although there are reported high perfor-
mance figures for named entity identification
and classification in general, there are some cat-
egories of named entities that remain problem-
atic. We will refer to those strings in a text
that may correspond to named entities as can-

didate named entity strings; one type of
candidate named entity string that is problem-
atic, from a surface linguistic perspective, is the
category that contains conjunctions. Consider
the string Australia and New Zealand Banking
Group Limited: in the absence of an appropri-
ate domain lexicon, an occurrence of this string
within a document could be interpreted as ei-
ther being the name of one company, or as be-
ing a conjunction of a location and a company
name.1 Determining the correct interpretation
is clearly important for any application which
relies on named entity extraction.

We have been working with a data set from
the Australian Stock Exchange (ASX). This
data set consists of a large set of company an-
nouncements: for a variety of regulatory rea-
sons, listed companies provide around 100000
documents to the ASX each year, and the ASX
subsequently makes these available to users via
the web. Our goal is to take this data set (and
similar data sets) and to add value to the docu-
ments by making use of language technologies.

1Such a conjunction may appear pragmatically odd,
but, as we argue below, rejecting possibilities on such
grounds requires a complicated set of rules.

7



The overall approach taken in this work is de-
scribed in (Dale et al., 2004).

The significance of the kinds of ambiguities
we introduced above depends, of course, on the
extent to which the phenomenon of conjunc-
tions in named entities is widespread. Our cur-
rent work focuses on a subcorpus of 13000 ASX
documents. From this subcorpus, we selected
45 documents at random; in these documents,
there were a total of 545 candidate named en-
tity strings, of which 31 contained conjunctions.
This informal sampling suggests that conjunc-
tions appear, on average, in around 5.7% of can-
didate named entity strings;2 however, in some
documents in our sample, the frequency is as
high as 23%. These frequencies are sufficient
to suggest that the seeking of an appropriate
means of handling conjunctions is a worthwhile
and important pursuit.

For present purposes, we define a candidate
named entity string as any sequence of words
beginning with initial capitals, with the possi-
ble inclusion of a single instance of the word and
or the form & internal to the string.3 An exami-
nation of the candidate named entity strings ap-
pearing in our corpus reveals four distinct uses
of the conjunction, as exemplified in the follow-
ing:

1. Oil and Gas Ltd

2. Agfa and Fuji

3. John and Mary Smith

4. Company Secretary Resignation and Ap-
pointment

In example (1), we have a single named entity
that happens to contain an internal conjunction;
in example (2), we have a conjunction of two
distinct named entities; and in examples (3) and
(4), we have conjunctions that, from a linguistic
perspective, contain a form of ellipsis, so that
one conjunct is incomplete on its own, but can
be completed using information provided in the
other conjunct.

That conjunctions are problematic has been
noted before, in particular by Mikheev et al.

2For comparison, a check on the MUC-7 evaluation
data shows that, in that corpus, the proportion of can-
didate named entity strings containing conjunctions is
4.5%, so our corpus appears not particularly unusual in
this regard.

3This is clearly an overly restrictive definition, but it
appears to account for a large proportion of the cases we
are interested in.

(1998), who suggested the strategy of examin-
ing the preceding document context to identify
candidate conjuncts that should be considered
as separate named entities. Mikheev et al. men-
tion this approach being part of their system
used in the MUC-7 competition, but no data is
reported on the accuracy of this kind of heuris-
tic; in our experience, there are many cases
where there are no antecedent mentions that
can be used in this way. Furthermore, in the
MUC-7 data, strings like John and Mary Smith
were considered as one named entity, whereas
we take the view that, for many information
extraction applications, it is important to rec-
ognize that this string represents two distinct
entities.

2 Problem definition

Following from the above, we distinguish four4

categories of candidate named entity strings
containing conjunctions.

A: Name Internal Conjunction: This cate-
gory covers those cases where the candidate
named entity string contains one named en-
tity, where the conjunction is part of the
name. Some examples from our corpus:5

Copper Mines and Metals Limited, Herbert
P Cooper & Son, Ernst & Young, Accep-
tance and Transfer Form, and Fixing and
Planning Phase.

B: Name External Conjunction: This cat-
egory covers those cases where the conjunc-
tion serves to separate two distinct named
entities. Some examples from our cor-
pus: Proxy Form and Explanatory Mem-
orandum, Hardware & Operating Systems,
John Travolta and Robin Wright Penn, and
EchoStar and News Corporation.

C: Right-Copy Separator: This category of
conjunction separates two named entities,
where the first is incomplete in itself but
can be completed by copying information
from the right-hand conjunct. This is
perhaps most common in conjunctions of

4Conceptually, we might view the last two categories
as subtypes of the more general category Copying Sep-

arator; however, it makes sense to keep the two cate-
gories separate, since the process of reconstructing the
unelided conjuncts is different in each case.

5In what follows, we treat the ampersand (&) and the
full lexical item and as being equivalent; however, as we
discuss later, there are cases where it may be useful to
distinguish the two forms.

8



proper names, as in William and Alma
Ford, but appears in other contexts as well.
Some examples from our corpus: Con-
nell and Bent Streets, Eastern and West-
ern Australia, and Melbourne and Harvard
Universities.

D: Left-Copy Separator: This is similar to
the previous category, but instead of copy-
ing information from the right-hand con-
junct, in order to complete the constituent
named entities we need to copy information
from the left conjunct. Examples in our
corpus: Hospital Equipment & Systems,
J H Blair Company Secretary & Corporate
Counsel.

In the data we have analysed, most examples
are either Name Internal or Name External, and
Left-Copy Separators are the rarest. It should
be noted that the Copy Separator categories
have been explored within linguistic treatments
of conjunction, particularly as found in Cate-
gorial Grammar (see, for example, (Steedman,
1985)), although linguistic analyses tend to fo-
cus on conjunctions involving common nouns
rather than proper names.

We could attempt to distinguish the different
uses of the conjunction by means of some heuris-
tics. For example, if a candidate named en-
tity string matches the pattern 〈GivenName and
GivenName FamilyName〉, the conjunction is
probably a Right-Copy Separator; and if
it matches the pattern 〈CompanyName and
CompanyName〉, the conjunction is most likely a
Name External Conjunction. However, analysis
of a reasonably large sample makes it clear that
there are many different cases to be considered,
and the heuristics required are difficult to derive
by hand; a significant reason for this is that the
names of people, companies, and locations, as
well as other less common named entity types,
may occur in many different combinations.

Consequently, we decided to view the prob-
lem as one of classification: given a particu-
lar instance of the conjunction and its left and
right conjuncts, we want to determine, via ma-
chine learning, which category the conjunction
belongs to.

3 Experimental Setup

We carried out an experiment to determine
how machine learning algorithms cope with the
problem of conjunction classification in named
entities. In the work described in this paper,

we limited the experiment to candidate named
entity strings containing a single occurrence of
the conjunction & or and.

In our approach, before we attempt to disam-
biguate the conjunctions we first tag the con-
stituents of each candidate named entity string
with their types. This step also recognizes
multi-word elements where there is no ambigu-
ity (for example, in the case of unambiguous
person and company names); for example, Aus-
tralia and New Zealand Banking Group Lim-
ited should be recognized as a sequence of to-
kens whose types are marked as Loc and Loc
Org CompDesig, where the second Loc tag cor-
responds to the pair of tokens New Zealand.

Table 1 lists the 21 tags we use to annotate
the tokens. Some of these, such as Loc, Org,
GivenName, AlphaNum, Dir, and PersDesig, are
the same as those used by many other named
entity recognizers; there are also two tags that
come from part-of-speech tagging (Noun and
Adj). In our corpus, we note that there are a
number of frequently occurring key terms which
can be thought of as closed class items that are
highly indicative of named entity type, and so
we also use a number of tags to annotate specific
words that perform a key role in distinguish-
ing the categories (Form, Son, Project, System,
and Phase). In our corpus there are 160 occur-
rences of Form(s) tokens, 102 of Son(s), 75 of
Project(s), 56 of System(s) and 4 occurrences
of Phase(s).

Some additional comments are appropriate
by way of explanation of some of the tags:

• Fac (Facility) is a general-purpose category
intended to cover ‘domain objects’: names
of buildings, meeting places, and worksites.
Examples are Ashmore Tavern, Imperial
Hotel, Parkway Plaza, and Solano Mall.

• CompDesig (Company Designator) is used
for those tokens that unambiguously mark
the occurrence of a company name, such as
Ltd, Limited, Pty Ltd, GmbH, and plc; we
also use this tag for much longer and not so
obvious multi-word sequences like Invest-
ments Pty Ltd, Management Pty Ltd, Cor-
porate Pty Ltd, Associates Pty Ltd, Family
Trust, Co Limited, Partners, Partners Lim-
ited, Capital Limited, and Capital Pty Ltd.

By assigning tags to tokens we obtain a
pattern which represents the named entity
candidate string. For example, for the string
Herbert P Cooper and Son Ltd the

9



No Tag Meaning

1 Loc The name of a location
2 Org The name of an organization
3 GivenName A person’s given name
4 FamilyName A person’s family name
5 Fac A facility
6 Initial An initial in the range A-Z
7 CompPos A position within a company
8 Abbrev Abbreviation
9 PersDesig A person designator
10 CompDesig A company designator
11 Son Son(s)
12 Dir A compass direction
13 AlphaNum An alphanumeric expression
14 Day The name of a day
15 Month The name of a month
16 Adj An adjective
17 Noun A noun
18 Project Project(s)
19 System System(s)
20 Phase Phase(s)
21 Form Form(s)

Table 1: The tags used for text annotation.

pattern is 〈GivenName Initial Family-
Name & Son CompDesig〉.

For the purposes of machine learning, we then
encode each pattern in the following way. We
create an attribute for each of the 21 tag types
for each of the left and right sides of a conjunc-
tion, for a total of 42 attributes. The attributes
are of integer type with values {0, 1}, thus sig-
naling either the presence or absence of a token
of that type anywhere within either conjunct.
We will refer to this encoding as the Basic En-

coding.

On the basis of the results we obtained using
the Basic Encoding (see Section 5.1), we cre-
ated an additional five attributes for each con-
junct: GivenNameCount, FamilyNameCount, Ini-
tialCount, NounCount and AdjCount. They serve
as counts of the number of occurrences of the
relevant token types, and have non-negative in-
teger values. This extended set of 52 features
will be referred to as the Extended Encod-

ing.

With each data instance there is associated a
ConjType attribute with the values {A,B,C,D};
this is used to encode the category of the con-
junction in the training or test example.

The corpus used for our research consisted
of a 13460 document sub-corpus drawn from a
larger corpus of company announcements from
the Australian Stock Exchange. The documents

range in length from 8 to 1000 lines of text.
Choosing training and test examples was car-

ried out in a number of steps. First, candi-
date named entity strings containing sequences
of words with initial capitals, and an embed-
ded conjunction, were extracted using a Perl
script. This provided over 10560 candidate
named entity string instances, corresponding to
6645 unique forms. For this experiment we did
not collect candidate named entity strings con-
taining lowercased prepositions and determin-
ers such as of, in, a, and the, although clearly
many relevant named entities will contain these
elements.

From this set we randomly selected examples
for our training and test data sets. Each ran-
dom selection was followed by hand elimination
of examples that turned out to be wrongly iden-
tified as candidate named entity strings in the
text.6

The experiment consisted of two test runs,
one using the basic encoding and the second us-
ing the extended encoding, as described above.
In each case we used the same set of 348 train-
ing instances, and the same set of test data with
197 previously unseen examples.

Table 2 presents for each data set the distri-
bution of examples across the four categories of
conjunction.7

Data Set A B C D Sum

Training 135 160 35 18 348
Test 55 119 15 8 197

Table 2: Data sets sizes and example distribu-
tions in categories.

4 The Algorithms

The experiment was conducted using the
WEKA toolkit (Witten and Frank, 2005). This
provides implementations of several machine
learning algorithms, along with the data struc-
tures and code needed to perform data input

6Wrong identification occurred due to typographic
features such as ASCII formatted tables, paragraphs in
all upper case, sentences or titles where every word con-
tained an initial capital, and punctuation errors in the
source texts.

7By way of comparison, the corpus used for the
MUC-7 final evaluation contains 53 strings correspond-
ing to our category A and 124 strings for category B; the
data from the training phase of the competition contains
28 category A strings and 81 category B strings. Recall
from above that the MUC data does not recognize our
categories C and D.

10



and output, data filtering and results evalua-
tions and presentation.

After some initial exploration using a vari-
ety of algorithms for supervised machine learn-
ing available in WEKA, we chose six which
gave the best results: the Multilayer Percep-
tron, two lazy algorithms (IBk and K*), and
three tree algorithms: Random Tree, Logistic
Model Trees and J4.8. We also include here the
results for Näıve Bayes, given the popularity of
this method in the field.

5 Results

We observe (see Table 2) that conjunctions of
category B (Name External Conjunction) are
the most frequent in our annotated data set.
This gives us a simple baseline for comparison:
by choosing the most frequent category by de-
fault, we would achieve a correct classification
rate of 60.41%.

Tables 3 and 4 present detailed results of the
two test runs using the classifiers trained on
our feature set; recall that the extended encod-
ing takes account of the number of instances of
specific token types, rather than just a binary
distinction between presence and absence. We
show the number of correctly classified exam-
ples for both the training and test data sets.

Algorithm Training 348 Test 197

Näıve Bayes 71.84% 250 68.53% 135
Mult. Perc. 91.95% 320 80.20% 158
IBk 92.24% 321 74.62% 147
K* 92.24% 321 74.62% 147
Random Tree 92.24% 321 77.16% 152
LMT 92.24% 321 81.22% 160
J4.8 87.36% 304 77.67% 153

Table 3: Results for basic encoding.

Algorithm Training 348 Test 197

Näıve Bayes 70.11% 244 64.47% 127
Mult. Perc. 93.97% 327 77.67% 153
IBk 93.97% 327 75.13% 148
K* 93.97% 327 75.13% 148
Random Tree 93.97% 327 72.08% 142
LMT 93.68% 326 81.73% 161
J4.8 87.36% 304 77.67% 153

Table 4: Results for extended encoding.

5.1 Basic Encoding

When looking at the results from the classifiers,
it turns out that patterns like 〈Noun & Noun〉 or

〈Noun & Noun Noun〉 made the biggest contri-
bution to misclassification; also patterns built
from combinations of several Nouns and some
other tags such as Adj or Org had a significant
impact on making the results worse. An inter-
esting subgroup for us are patterns with tags
Project, System and Form. It turns out that
these domain specific tags were not sufficient
to categorize test instances correctly.

The third large group of difficult examples
are those that are represented by long patterns
that consist of several kinds of tags. They also
usually contain up to three Noun tags; examples
of these patterns are as 〈Noun GivenName Org
& Noun Noun Noun〉 and
〈Abbrev CompDesig & Adj Noun CompDesig〉.

The fourth group of problematic cases are
patterns based on the FamilyName tag:
〈FamilyName & FamilyName〉,

〈FamilyName & FamilyName Loc〉,

〈FamilyName Loc & FamilyName Loc〉,

〈FamilyName & FamilyName Noun〉,

〈FamilyName Noun & FamilyName Noun〉,

〈Initial & Initial FamilyName〉.

5.2 Extended Encoding

An observation we made as a consequence of the
results obtained for the basic encoding was that
complexity and length of conjuncts appeared to
play a role in misclassification; accordingly, for
the extended encoding we introduced ten new
attributes, in the form of five counters for each
side of a conjunction. It turned out that new in-
formation was only slightly helpful for K* and
LMT (in both cases the gain in performance
was one example); for two algorithms there was
no impact; and the Multilayer Perceptron and
Random Tree algorithms encountered a signifi-
cant drop in performance, by, respectively, five
and ten examples (see Table 4). For both the
Perceptron and Random Tree algorithms there
were some cases where classification improved,
and some for which it got worse.

For the Random Tree algorithm, nine addi-
tional examples were classified correctly; as ex-
pected, these were cases involving long patterns
of up to 9 tags. However, 19 examples that
were correctly classified using the basic encod-
ing were misclassified with the extended encod-
ing; most of these consisted of tags related to
people or company names.

For the Multilayered Perceptron algorithm,
the extended encoding improved performance
on short patterns but made things worse on long

11



patterns.

5.3 General remarks

All the algorithms presented here performed far
above the baseline in each test run. The results
for the training data from each test (Tables 3
and 4) show that, in the training data, there are
about 7% of examples which could be perceived
as genuinely ambiguous. On investigation, the
vast majority of these examples belong to sev-
eral (usually two) categories and the most am-
biguous are of 〈Noun & Noun〉 and 〈FamilyName
& FamilyName〉 patterns, which we discuss later.
The instances of these patterns appeared am-
biguous to a human annotator.

The best result, 81.7259% of examples classi-
fied correctly, was achieved with the LMT algo-
rithm and the extended set of attributes. The
precision, recall and F-measure for this case are
presented in Table 5. Table 6 provides a confu-
sion matrix with the desired and actual classifi-
cation of examples.

The LMT algorithm was also the best algo-
rithm in the test run using the basic encoding of
43 features. The second best algorithm was the
Multilayer Perceptron, which scored 80.2% and
78.2% with the basic and extended encodings
respectively. However, the difference between
the results for the two algorithms is not statis-
tically significant.

Category Precision Recall F-Measure

A 0.658 0.909 0.763
B 0.969 0.790 0.870
C 0.667 0.667 0.667
D 0.778 0.875 0.824

weighted mean 0.851 0.817 0.823

Table 5: Detailed accuracy by category of con-
junction for best result (LMT, Extended Encod-
ing).

A B C D → classified as ↓

50 22 3 1 A
1 94 2 0 B
4 1 10 0 C
0 2 0 7 D

Table 6: Confusion matrix for best result (LMT,
Extended Encoding).

6 Analysis

6.1 Data preparation

It is important to stress that our experiment
was conducted in the specific domain of com-
pany announcements from the Australian Stock
Exchange; these documents have some features
that are not necessarily typical for others. In
particular, texts in this domain frequently have
some of the characteristics of legal documents,
where many sometimes apparently arbitrary
elements are given initial capitals: typical ex-
amples from our corpus would be expressions
like Primary and Secondary, Profit & Loss, Re-
ceivers and Managers or Resource and Reserve.
Many of these are high frequency terms, and so
could be filtered out in a separate preprocess-
ing stage; however, a complicating factor here
is that casing is not used consistently by some
authors. A more general problem is that of ti-
tles, for example titles of books, documents and
document elements such as tables and headings;
the unrestricted productivity of these kinds of
terms means that they are not easily character-
isable by patterns of the kind explored here, and
would be more appropriately handled by a more
syntactically driven model.

The results of our conjunction disambigua-
tion process are very dependent on the tags as-
signed in the preprocessing stage. It can make a
big difference, for example, whether a substring
is recognized as a sequence of Nouns or as one
Location name. Extensive gazetteers can play
a role here, but some cases are ambiguous even
for humans. For example, Trustees Executors
is a company name;8 but if this is not detected
during tagging, it is tagged as 〈N N〉, which is
much more ambiguous and impacts on perfor-
mance. Similarly, a string like Boyer and Haro
Fields can be difficult to analyze correctly with-
out recourse to extensive world knowledge.

6.2 Error analysis

6.2.1 One Pattern, Many Categories

When investigating the misclassified strings we
found that there are many cases where a given
pattern belongs to more than one category. For
example, we have the following in the training
data:
String: Ernst and Young Consulting
Pattern: 〈FamilyName & FamilyName Noun, A〉

String: National Parks and Wildlife Service

Pattern: 〈Adj Noun & Noun Noun, A〉

8Trustees Executors was the first trustee company in
New Zealand, established in 1881.

12



but in the test data we have:
String: Boyer and Haro Fields
Pattern: 〈FamilyName & FamilyName Noun, C〉

String: General Meeting and Proxy Votes

Pattern: 〈Adj Noun & Noun Noun, B〉

The 〈Noun & Noun〉 and 〈FamilyName &
FamilyName〉 patterns are particularly prone to
this ambiguity; we discuss these cases further
below.

These examples suggest that our feature set is
not capturing enough distinctions to enable cor-
rect classification; providing richer information
about the candidate string would help, draw-
ing from morphological, syntactic, semantic and
even pragmatic features, should these be avail-
able.9

In different models created on the basis of
training data by individual classifiers, a differ-
ent category is assigned to these ambiguous pat-
terns. Since the number of examples of a given
pattern is not the same for particular categories,
the number of misclassified examples differs for
particular models. For example, there are ten
instances of 〈Noun & Noun〉 pattern in the test
data. Four of them are of category A, and six of
them are of category B. The LMT algorithm as-
signs for this pattern probabilities pA = 0.455,
pB = 0.409, pC = 0.136 and pD = 0. When
a 〈Noun & Noun〉 example from the test data is
to be classified, the classifier chooses category A
as the most likely. On the other hand, the Mul-
tilayered Perceptron algorithm derives the fol-
lowing probabilities: pA = 0.414, pB = 0.476,
pC = 0.110 and pD = 0. Consequently, it clas-
sifies all strings matching the 〈Noun & Noun〉
pattern as being of category B.

6.2.2 〈Noun & Noun〉

As noted in Section 5, some of the most am-
biguous candidate strings are those whose pat-
terns are based on nouns and adjectives. This
is not surprising, since these are very general
tags capturing everything which is not recog-
nized as a genuine proper name, an alphanu-
meric sequence of characters, or any of the spe-
cific distinguished terms captured by our other
tags. In these cases the correct categorisation
of the conjunction usually depends on the con-
text, which sometimes can be even the whole
text. General knowledge about the world is
sometimes also essential; consider, for example,

9In the example shown here, Ernst and Young could
also be detected during preprocessing on the basis of a
company name gazetteer, but such lists will never be
complete.

the strings Gummy & Kipper or Showtime and
Encore, whose nature is quite unclear without
recourse to other knowledge sources. This prob-
lem concerns mainly categories A and B, since
initcapped general terms can appear equally
freely in both cases.

In the test with the extended encoding, six
out of 36 incorrect classifications involved the
pattern 〈Noun & Noun〉; in each case, these
should have been categorised as instances of cat-
egory B (Name External Conjunction), but were
classified as category A (Name Internal Con-
junction). There were also another three exam-
ples of slightly more complex patterns contain-
ing more nouns:

String: Tourism and Hotel Management

Pattern: 〈Noun & Noun Noun〉

String: Placement Shares and Options

Pattern: 〈Noun Noun & Noun〉

String: Country Comfort and Chifley

Pattern: 〈Noun Noun & Noun〉

6.2.3 〈FamilyName & FamilyName〉

The 〈FamilyName & FamilyName〉 pattern also
causes problems in classification. Because many
company names are created as a conjunction
of two surnames, it happens that our training
data contains more examples of this pattern for
category A (Name Internal) than for category
B (Name External), and so the model built
by LMT considers category A to have proba-
bility of 0.704. However, there are still some
cases when 〈FamilyName & FamilyName〉 does
not denote an organization. So, regardless of
the quality of the training data, it is worth
checking whether somewhere in the text there
exists a corresponding string with the pattern
〈FamilyName & FamilyName CompDesig〉.

6.2.4 Domain Dependent Substrings

As for any domain, it may be possible to iden-
tify a set of specific recurring strings or patterns
that could be recognized in a preprocessing step,
so that the learning algorithm does not need to
deal with these cases. In our data, these turn
out to belong to the set of strings that cause a
range of problems. Two such examples are Ex-
planatory Notes and Proxy Form, Information
Memorandum and Proxy Form. In our corpus
of candidate named entities, the string Proxy
Form occurs 35 times. A reasonable strategy
would be to assume that any string of the form
... and Proxy Form involves the use of a Name
External conjunction.

13



7 Conclusions and Future Work

We have analyzed the problem of conjunctions
in candidate named entity strings; we distin-
guished four categories of conjunction that ap-
pear in these strings, noted that the appropri-
ate disambiguation of these is a problem that
requires attention, and defined the problem as
one of classification. We then conducted an ex-
periment whose aim was to determine whether
the problem could be solved by means of ma-
chine learning algorithms.

We have shown that there are instances of
conjunction which are difficult even for humans
to classify correctly. Very often the decision re-
quires extensive analysis of the content, and the
use of general world knowledge. Given the ex-
istence of such cases, the results demonstrated
here with machine-learned classifiers are very
encouraging. There are several regards in which
the work reported here can be improved further.

1. We have restricted ourselves to candidate
named entity strings which contain a single
conjunction; however, there are of course
cases where multiple conjunctions appear.
One category consists of examples like Au-
dited Balance Sheet and Profit and Loss
Account, where again the kinds of syn-
tactic ambiguity involved would suggest a
more syntactically-driven approach would
be worth consideration. Another category
consists of candidate named entity strings
that contain commas as well as lexicalised
conjunctions.

2. In the work described here, we did not dis-
tinguish between the two variants of the
lexicalised conjunction (i.e., & and and).
Obviously, these two forms are not used in
text completely interchangeably: for exam-
ple, it is relatively unusual to separate two
person names (as in Alex and Bill Smith)
using an ampersand.

3. Candidate named entity strings can con-
tain other closed class items, such as of
and the; extension of the treatment here to
this larger class of candidate strings will in-
troduce new complexities, but at the same
time these terms may provide useful disam-
biguating features.

An issue that may be restricted to corpora that
have a broadly legal character is the frequent
appearance of candidate named entities that
are made up of common nouns. In contrast

to a ‘substring recognition’ approach that re-
lies on information from gazetteers, many of
these cases might be amenable to a more syn-
tactically sophisticated analysis, and this is one
place where work on conjunction from a lin-
guistic perspective might provide some leverage;
however, there then remains the issue of deter-
mining which approach to use in a given case.
Named entities containing conjunctions, and
named entities separated by conjunctions, con-
stitute a form of ambiguity that needs to be
handled for high accuracy named entity extrac-
tion. We have shown that machine learning can
achieve good results in resolving these ambigu-
ities.

8 Acknowledgements

The work reported here was carried out while
the first author was a visiting scholar at the
Centre for Language Technology at Macquarie
University.

References

Amit Bagga. 2004. Cross-Document Corefer-
ence: Methodologies, Evaluations, and Appli-
cations. In António Branco, Tony McEnery,
and Ruslan Mitkov, editors, Proceedings of
5th Discourse Anaphora and Anaphor Resolu-
tion Colloquium, Portugal, 23-24 Sep., 2004.

R. Dale, R. Calvo, and M. Tilbrook. 2004. Key
Element Summarisation: Extracting Infor-
mation from Company Announcements. In
Proceedings of the 17th Australian Joint Con-
ference on Artificial Intelligence, 7th-10th
December 2004, Cairns, Queensland, Aus-
tralia.

Ralph Grishman and Beth Sundheim. 1996.
Message Understanding Conference-6:
A Brief History. In COLING 1996 Vol-
ume 1: The 16th International Conference
on Computational Linguistics, Los Altos, Ca.
Morgan Kaufmann.

A. Mikheev, C. Grover, and M. Moens. 1998.
Description of the LTG System Used for
MUC-7. In Seventh Message Understanding
Conference (MUC-7): Proc. of a Conf. held
in Fairfax, Virginia, 29 April-1 May, 1998.

M. Steedman. 1985. Dependency and Coordi-
nation in the Grammar of Dutch and English.
Language, 61:523–568.

Ian H. Witten and Eibe Frank. 2005. Data
Mining: Practical machine learning tools and
techniques. Morgan Kaufmann, San Fran-
cisco, 2nd edition.

14


	From Non-segmenting Language Processing to Web Language Engineering

