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Abstract 

We present new results for the DSTO 
project on document classification of 
military messages. We report more 
specifically on the improvements to the 
Part-Of-Speech (POS) tagging, a 
probabilistic process that assigns a tag to 
a token, and discuss the training for Date 
Time Groups POS tags. A new 
implementation of the rule-based 
classifier is described. The results 
obtained on two databases of real military 
messages are encouraging and the 
document classification module has now 
been integrated with a query user 
interface. 

1 Introduction 

In (Carr and Estival, 2002), we presented the first 
tentative results of the Document Classification 
project we have been conducting at DSTO and we 
discussed the shortcomings of the approach we 
were using. In this paper, we present the results we 
have obtained in the continuation of that project, 
after having implemented improvements in the 
POS tagging component and taken a different 
approach for the rule-based classifier component.  
These results show that rule-based classifiers can 
give reasonable results for structured textual 
information, when using appropriate language 
models for POS tagging. 

1.1 Goals of the project  

A large part of the Defence Information 
Environment (DIE) used at the Deployable Joint 
Force Headquarters (DJFHQ) is based on Lotus 
collaborative and messaging applications.  The 
staff members of DJFHQ use Lotus databases to 

log operational events and Lotus e-mail for actions 
and administrative functions. Around 200 
messages per day are entered into these Lotus 
Notes log databases. Many DJFHQ staff members 
have expressed difficulty in finding particular 
information in their information reservoirs and our 
goal is to develop a more effective query interface 
between DJFHQ staff and their information 
reservoirs. This work already resulted in the 
development of the Query Building Interface 
(QBI), which was designed to create a better 
search interface to multiple log databases and to 
the users e-mail database. The rule-based 
Document Classifier we describe here has been 
trained and evaluated on Lotus operational log 
databases (OPS logs) from DJFHQ. It can now 
provide a categorisation for each document from 
the OPS logs and is integrated with QBI, as 
described in Section 7.2.   

1.2 Proposed Architecture 

Fig.1 below shows how QBI and the Document 
Classifier could be integrated in the existing IT 
infrastructure. In this new Server Environment, 
both QBI and the Document Classifier interface 
with the Lotus Notes database.   
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Fig.1 Proposed Architecture 

 
In this architecture, users enter and access 
documents through Lotus Notes as they do now, 
and they receive notification of the document 
classification. One possible scenario is to use a 
Text-to-Speech module to warn of the arrival of 
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some pre-specified document types, eg. NOTICAS 
(Notification of Casualty) or MEDSITREP 
(Medical Situation Report). For a NOTICAS, the 
injured person's details could be automatically 
retrieved and read out to the Commander or sent to 
a different display.   

1.3 Structure of the system 

The Document Classifier module in Fig.1 is named 
SOP-MRC (Standard Operating Procedures Rule 
Based Multiclass Classifier), and as shown in 
Fig.2, it consists of two main components: a Part-
Of-Speech (POS) Tagger and a Classifier.   

 

 
Fig. 2 The SOP-MRC module 
 
The POS Tagger component, described in Section 
3, is a probabilistic process that assigns a tag to a 
token. We also describe the training of this 
component in Section 3 and present our extension 
of the POS tagset for the military message data.   

The Classifier component, described in Section 
4, takes as input the list of pairs <token> <tag> 
produced by the POS Tagger for an incoming 
message and uses rules to determine the document 
type (including "free text") of the message. 

We present in Section 5 the results we obtained 
on data from two military exercises.  One database 
(VP-02) contains messages used to train the POS 
Tagger and to develop the classifier rules.  The 
second database (TT-01) contains similar 
documents from another military exercise. 

2 Shortcomings of the previous approach 

There were two types of problems with the first 
approach we took to classify the SOP documents 
from the DJFHQ message database.  The first one 
was that the data did not conform to expectations 
and the second one was that the classification rules 
were too brittle. Both issues have been addressed 
by the new approach to writing the classification 
rules described in Section 4.2. 

DJFHQ operators use formatted text in the 
free text fields of their Lotus Notes operational log 
databases. This formatted text is defined by 
Standard Operating Procedure (SOP) documents, 
and there are 88 different SOP Document Types 
corresponding to different message types. Our first 
approach had been to define rules based on the 
definition of the SOPs, which are available to the 
operators writing those messages as MS Word 
documents. However, the actual messages often do 
not follow the format prescribed by the SOPs and, 
in addition, they often contain attachments and 
other material, which makes classification more 
difficult. The new rules now take into account 
variations in the way operators actually write their 
messages and allow more flexibility in the 
classification. This is described in Section 4. 

Another problem was that the POS tagset used 
by our POS Tagger did not cover some token types 
that are very important in military messages. In 
particular, one lesson from our earlier work was 
that it is necessary to recognise Date Time Group 
(DTG) expressions and that we would have to 
develop our own tagset to fit the military domain. 
The additions we made to the POS tagset, are 
discussed in more detail in Sections 3.2 and 3.5. 

3 POS Tagging 

3.1 QTAG 

The POS tagger we chose to use is Qtag, a portable 
trainable language-independent probabilistic tagger 
developed by the University of Birmingham 
(Mason, 2003; Tufis and Mason, 1998). There are 
several training corpora available on the Internet to 
train POS taggers.1 Qtag was originally trained 
with the Industrial Parsing of Software Manuals 
(IPSM) (Sutcliffe et al, 1996), which uses the Penn 
Treebank tagset, and it comes with the 
Birmingham – Lancaster Tagset and the associated 
resource file trained for English.     

Qtag takes free text as input and outputs 
SGML, with each line containing the tag and the 
token it corresponds to. An example of input from 
our corpus and of the output produced by Qtag is 
given in Fig. 3. 
                                                             
1 See e.g. the Automatic Mapping Among Lexico-
Grammatical Annotation Models (AMALGAM) project: 
http://www.comp.leeds.ac.uk/amalgam/amalgam/multi-
parsed.html 



Input (VP-02) Qtag Output 
From HQCLSC, 

HSS facilities 

allocated to 
CLSC as 

follows, A. 34 

Fd Hosp (U.K) 

<w pos="IN">From</w>  

<w pos="JJ">HQCLSC</w>  

<w pos=",">,</w>  
<w pos="NN">HSS</w>  

<w pos="NNS">facilities</w>  

<w pos="VBN">allocated</w>  
<w pos="TO">to</w>  

<w pos="NN">CLSC</w>  
<w pos="CS">as</w>  

<w pos="VBZ">follows</w>  

<w pos=",">,</w>  
<w pos="NN">A.</w>  

<w pos="CD">34</w>  

<w pos="NN">Fd</w>  
<w pos="NN">Hosp</w>  

<w pos="NN">(U.K)</w> 

     Fig. 3  Output of Qtag using original tagset  
 
To deal with the particular type of text contained in 
SOP documents, 59 new POS tags (mainly 
formatting tags) were added to the original tagset 
of 45 tags. Fig. 4 shows the same text as Fig. 3, 
tagged by Qtag using the language model 
containing these additional domain specific tags.2,3 
 

Input (VP-02) Qtag Output 
From HQCLSC, 
HSS facilities 

allocated to 

CLSC as 
follows, A. 34 

Fd Hosp (U.K) 

<w pos="From">From</w>  
<w pos="VB">HQCLSC</w>  

<w pos=",">,</w>  

<w pos="NN">HSS</w>  
<w pos="NNS">facilities</w>  

<w pos="VBN">allocated</w>  
<w pos="TO">to</w>  

<w pos="NN">CLSC</w>  

<w pos="as">as</w>  
<w pos="NPS">follows</w>  

<w pos=",">,</w>  

<w pos="FrmA">A.</w>  
<w pos="CD">34</w>  

<w pos="NN">Fd</w>  
<w pos="NN">Hosp</w>  

<w pos="JJ">(U.K)</w> 

      Fig. 4  Output of Qtag using new tagset 

3.2 Date Time Groups (DTGs) 

As was described in (Carr and Estival, 2002), the 
analysis of our previous results showed that they 
were unsatisfactory in part because the POS 
Tagger did not recognise Date Time Groups 
(DTGs), which are very common in our texts, and 
                                                             
2 HQCLSC stands for "Headquarters Combined Logistics 
Support Command".  Note that the POS tags assigned to it (JJ 
in Fig.3 and VB in Fig.4) are incorrect, as are several of the 
other tags. 
3 The tag <FrmA>, meaning  a "formatted A character", 
covers the strings "\nA.", "\n(A)" and "\nA)".  
 

which play an important role in document type 
recognition for SOPs. For the purpose of document 
classification, a DTG is a single unit of 
information, but there are 3 types of DTGs that 
appear in the SOPs:  
• DTG_S, with time and time zone information, 
• DTG_M, with day, time and time zone 

information, 
• DTG_L, with day, time, time zone, month, and 

year information.   
Examples of these are given in (1) with their 
corresponding POS tag.  
 
(1) DTG_S  1259Z  
 DTG_M  310745Z 
 DTG_L  200830ZAUG02 
 

Although the 3 different types of DTGs are not 
often distinguished by the classifier rules, the POS 
Tagger needs to be trained on these 3 different 
DTG types, to avoid confusion with other 
alphanumeric strings. (2) is an example of the 
output from Qtag, where the DTG_S tag is 
correctly assigned to the text "1100K". 
 
(2)  <w pos="at">AT</w>  
  <w pos="DTG_S">1100K</w> 
  <w pos="NN">C130</w> 
 

As shown in Table 1, the baseline performance of 
Qtag (trained on 80% of the VP-02 data and tested 
on the remaining 20%) for DTGs was fairly low.  
This is due to the inadequate training data for 
DTGs in this corpus, which comes from one 
military exercise covering a short period of time, 
and thus conatining few variations for dates.  
  

  POS Baseline    

  DTG_S DTG_M DTG_L All Tags 

Recall 9.68% 15.72% 24.28% 74.39% 

Precision 6.90% 13.74% 14.86% 75.23% 

       Table 1  Baseline Performance of Qtag 

3.3 Training with additional data. 

To improve recognition of DTGs, we decided to 
create additional examples of DTGs to boost the 
training data for Qtag. For each of the DTG types, 
additional data was created in a systematic way to 
obtain instances of DTGs covering a wider range 
of dates and times. Table 2 shows the performance 
of Qtag with additional training data for DTGs. 
 



  
 

additional DTG_M 
  

 

  DTG_S DTG_M DTG_L All Tags 

Recall 100.00% 98.91% 95.65% 90.81% 

Precision 80.52% 98.91% 95.65% 85.94% 

  additional DTG_S  

  DTG_S DTG_M DTG_L All Tags 

Recall 100.00% 98.91% 95.65% 92.75% 

Precision 80.52% 98.91% 95.65% 87.77% 

  additional  DTG_L  

  DTG_S DTG_M DTG_L All Tags 

Recall 100.00% 98.91% 95.65% 90.95% 

Precision 80.52% 98.91% 59.46% 85.94% 

 
Table 2  Additional training data for DTGs  
 

Since the worst performing category had been 
DTG_M, we first added 482 additional instances of 
DTG_M to the training file for Qtag. The same 
process was repeated for DTG_S and DTG_L, with 
158 and 8,063 additional instances respectively.   

3.4 Overtraining 

Table 2 shows that the performance of Qtag 
improved when the DTG_M data was first added 
but decreased significantly after DTG_L data was 
added (additional DTG_S training data did not 
make any significant difference). The decrease in 
performance after the DTG_L data was added is 
due to overtraining of Qtag. Using the same 
recursive algorithm, adding year information leads 
to the creation of many more instances of DTG_L 
than DTG_M and DTG_S and skews the training 
data, resulting in many false positives for that 
category. Since the training text with the added 
DTG_M and DTG_S gave the best performance, 
this is what we used to create the Qtag language 
model. 

3.5 New POS tags for measure units 

Table 3 shows examples of DTG tokens that were 
miscategorised by Qtag. We can see that most of 
these are in fact genuine DTGs, which is good 
news since the classifier rules are not concerned 
with the type of DTG (DTG_S, DTG_M, or 
DTG_L) but only with the occurrence of a DTG. 

 
 
 
 

Number Example Tag Correct Tag(s) 

1 030/02OF170015ZMAY02 NN DTG_L 

1 2100S DTG_S LAT_LONG_S 

2 4000FT, DTG_S DST 

8 4000L DTG_S WGT 

5 171659Z NN DTG_M 

13 WEST req NN 

8 5000M DTG_S DST 

32 (2)AT NN Frm2 at 

7 (0.5-0.7 NN CD 

1 A.151206KMAR02 NN FrmA DTG_L 

2 PD:130800K NN Pd DTG_M 

1 C.LAND NN FrmC VB 

 
Table 3 Errors in POS tagging for DTGs 
 

Further analysis of the miscategorisations shown in 
Table 3 suggests ways in which the performance of 
the POS Tagger can be improved: 
§ add additional training data for DTGs with 

different minute information than 0 or 5;   
§ add POS tags for measure units, such as 

<WGT> for weights, <DST> for distances, 
<SPD> for speeds, 

§ add POS tags for the various different types 
of Latitude and Longitude information or 
Grid reference. 

Some examples are given in (3). 
 
(3)  <w pos= "WGT">2500KG</w> 
 <w pos ="DST">500NM</w> 
 <w pos = LATLONG>15.35S/151.20E </w> 
 

In the end, 71 extra tags were added to the tagset, 
giving a total of 116 POS tags.2 The new Qtag 
language model was trained on 80% of the POS 
tags from the VP-02 data. The remaining 20% 
(36862 tags from 430 messages from VP-02) were 
used to test the performance of the POS Tagger. 
Table 4 shows the results obtained for the DTG_S, 
DTG_M and DTG_L tags, after Qtag was trained 
with the additional training data for the new 
measure units POS tags. 

 

New Tags Recall Precision 

DTG_S 100.00% 91.18% 

DTG_M 98.91% 99.27% 

DTG_L 97.34% 100.00% 

 
Table 4  DTGs with new language model 

                                                             
2 There were 57 tags for formatting, 3 for DTGs, 3 for 
measure units and 6 for Lat/Long/Grid.  Only 111 out of the 
116 different POS tags appear in our test data. 



 

Table 5 shows the overall results for Qtag using 
the macroaverage and microaverage statistics as 
described in (Sebastiani, 2001). Almost half of the 
POS tags in the test data were <NN>. We believe 
using the microaverage result without <NN> gives 
a better indication of performance. 

 

 Recall and Precision Averages Recall Precision

Macroaverage 89.69% 95.65% 

Microaverage 97.84% 97.08% 

Microaverage (no NN) 92.67% 94.75% 

 
Table 5  Overall Performance of Qtag 

4 Rule-based Classifier 

Unlike most work on document classification (see 
Jackson and Moulinier, 2002, or Manning and 
Schütze, 1999), we do not rely on the semantic 
content of the documents to classify our 
documents, but take advantage of the very highly 
constrained structure of the documents. This is an 
example of Category-Pivoted Text Classification 
where the classifier is given a classification and 
must find which messages should be assigned to a 
given class, as opposed to Document-Pivoted Text 
Classification, which tries to determine the 
appropriate classifications for a set of documents 
(Sebastiani, 2002). 

Quoting from (Jackson and Moulinier, 2002), 
there are two views of NLP: "Symbolic NLP tends 
to work top-down by imposing known grammatical 
patterns and meaning associations upon texts. 
Empirical NLP tends to work bottom-up from the 
texts themselves, looking for patterns and 
associations to model, some of which may not 
correspond to purely syntactic or semantic 
relationships." Empirical NLP has been widely 
used since the early 1990's while Symbolic NLP 
has been viewed less favourably. The system we 
describe here is in the tradition of Symbolic NLP, 
as the categories we use have been pre-defined and 
do not emerge from the data. However, at this 
point, classification is mainly performed on the 
basis of formatting structures, not on linguistic 
constructs. 

Our first rule-based classifier used an "if, else" 
structure to parse the tags returned from Qtag one 
at a time. The document type was determined 
solely on the basis of the previous tag and the 

current tag, and only <Start> tags and the last one 
or two <End> tags were used to classify a 
message. A large amount of code (in Python) was 
written to implement this method, which turned out 
to be neither efficient nor successful. 

Our first approach was too optimistic and too 
reliant on the document structure given in the 
SOPs, and our rules did not perform well. Our 
second implementation of a rule-based classifier 
uses regular expressions to state the rules. Regular 
expressions allow us to define more detailed rules 
and they also allow for more flexibility. 

4.1 Regular Expressions as rules 

As discussed in (Carr and Estival, 2002), the 
discrepancy between the format prescribed by the 
SOPs and the real text input by the operators was 
one of the main causes of errors. The use of regular 
expressions as rules allows flexibility in rule 
definition and result in shorter and more effective 
code.  Several rules can be written to recognise one 
SOP document type.   

The output of Qtag is read into a string. This 
string contains the list of POS tags for a message. 
Each rule recognises the tags for one SOP 
document type and allows any number of other 
tags in between. Only those POS tags required by 
the classifier rules are read into the Classifier. 
Having all the POS tags in a string also allows 
message headers and multiple SOPs to be pruned 
off or recognised differently very easily.    

We give in (4) an example of a classifier rule 
for document type "P", where there can be any 
number of tags before <Frm1> and at least one 
instance of the separator or more tags before 
<Frm2>. In (5), we give an example of a message 
containing a document of type "P". 
 
(4)  P = ([ a-za-z]|[ A-Za-za-z0-9]|[ A-ZA-Z]|[ DTG_S]|[ 
DTG_M]|[ DTG_L]|[ a-za-za-za-za-za-za-z]|[ A-Za-za-za-z]|[ 
]]){0,}Frm1([ a-za-z]|[ A-Za-za-z0-9]|[ A-ZA-Z]|[ DTG_S]|[ 
DTG_M]|[ DTG_L]|[ a-za-za-za-za-za-za-z]|[ A-Za-za-za-z]|[ 
]]){1,}Frm2.([ a-za-z]|[ A-Za-za-z0-9]| [A-ZA-Z]|[ DTG_S]|[ 
DTG_M]|[ DTG_L]|[ a-za-za-za-za-za-za-z]|[ A-Za-za-za-z]|[ 
]]){0,}  
  
(5)   CD DTG_M Frm1 CD From at Frm2 DTG_L 

4.2 SOP-MRC rules 

As mentioned earlier, the classifier rules were first 
created following the 88 SOP document 
definitions. They were later derived from a corpus 



analysis and further refined after analysis of the 
results on the same corpus. The rules use mostly 
POS tags relating to formatting, eg. <Frm1> 
("formatted 1") or <FrmB> ("formatted B"), but 
also some content information, with the POS tags 
for DTGs and <CD> (number). A total of 66 rules 
were used to recognise the 37 document types that 
appeared in the VP-02 data. Of these 66 rules, 44 
rely on the POS tags for DTGs or <CD>.  

One disadvantage of using regular expressions 
to implement classifier rules might be that they can 
be fairly long. The example in (4) is one of the 
shortest rules in terms of number of elements.  
However, this problem can be alleviated by the use 
of named groups and the Python interpreter is 
useful to test the regular expressions before they 
are included into the classifier. 

It is also worth noting that these handcrafted 
rules were in fact written very quickly, much more 
quickly than "one rule in two days" as described by 
(Jackson and Moulinier, 2002). 

Each message is tested against all the rules for 
SOP document types. If no match is found, then 
the document is assigned to the document type 
"Free Text". Some rules are in fact subsets of other 
rules. This defines a hierarchy of rules which can 
be used to determine the correct SOP document 
type, see Section 6. 

5 Results 

We present the results obtained by SOP-MRC on 
two different message databases. The VP-02 
database was used for training the POS Tagger and 
to define the classifier rules. It contains 2328 
messages and 37 document types. The TT-01 
database contains 3131 messages and 18 document 
types.  The detailed results for each document type, 
for both VP-02 and TT-01, are given in Appendix 
1 and 2. 

The first part of Table 6 shows the overall 
results of SOP-MRC for VP-02. Since over 75% of 
the messages are "Free Text", we also show the 
microaverage result without the "Free Text" 
category to give a better indication of performance. 

The second part of Table 6 shows the overall 
results of SOP-MRC for TT-01. In this corpus, 
over 85% of the messages are "Free Text" and the 
microaverage result is again given without the 
"Free Text" category. 

Recall and Precision Averages Recall Precision 

VP-02   

Macroaverage 79.99% 67.94% 

Microaverage 82.49% 81.52% 

Microaverage (no Free Text) 70.53% 43.41% 

TT01   

Macroaverage 12.72% 13.09% 

Microaverage 86.77% 83.88% 

Microaverage (no Free Text) 77.39% 26.81% 

   
 Table 7  SOP-MRC for VP-02 and TT01 
 
These results are very encouraging. Although the 
macroaverage for TT-01 is not very good, this is 
explained by the fact that there were a number of 
False Positives for document types which do not 
occur in this data (see Appendix 2). The 
microaverage shows that the document types with 
larger numbers of documents are giving as good 
results for the new unseen data as for VP-02.  

An explanation for the discrepancies between 
the document types used in VP-02 and in TT-01 is 
that the SOP definitions were actually developed at 
DJFHQ, and that VP-02 was a military exercise 
which only involved that headquarters, with all the 
messages coming from DJFHQ, while TT-01 was a 
four nation exercise, with messages coming from a 
number of different headquarters. 

Another issue concerns the "Shift Handover" 
documents. The Shift Handover form is filled in by 
officers "handing over" their shift to another 
officer who "watches" the database for outstanding 
issues, and is a summary of the past 12 or 24 
hours. Although this form is essentially free text, 
because the officers tend to think in terms of 
formatted documents, they often write it as another 
formatted document, eg. with numbered items for 
new paragraphs. If we classified the Shift 
Handover form as "Free Text", the accuracy would 
improve. This can be seen as another example of 
the well-know fact that the operator or human 
element is a large factor in system success.  

6 Multilabel classification 

One of the lessons from our earlier work was that 
we needed to use a multilabel classification rather 
than a simple multiclass classification. In 
multiclass classification, each message is assigned 
to only one of several possible classes, while in a 
multilabel classification, a message can be 
assigned to one or more classes (Lewis, 2002). Our 



new classifier rules now perform a type of 
multilabel classification, by assigning a complex 
label to each message. An example of this complex 
label is shown in (6).3 

 

(6) C:B:A:Free Text 
 

This example shows the output of a message that 
contains a document of type C. As mentioned 
above, some rules are actually subsets of other 
rules, thereby defining a hierarchy of document 
types. In this case, the rule for document type C 
includes the rule for document type B, which 
includes the rule for document type A; thus A and 
B are also included in the complex label, as well as 
Free Text, the default classification. 

In our current implementation, we choose the 
label returned by the more specific rule in the 
complex label, and return it as the single label, or 
multiclass classification, for the message being 
classified (in this case, C). Although Sebastiani 
(2002) argues that a multilabel classifier cannot be 
used as a single label classifier, the complex label 
that is returned by our classifier component is in 
fact a multilabel classification in terms of the 
hierarchical structure of the classifier rules. This 
hierarchy can be thought of as a set of binary 
classifiers (implemented as classifier rules) listed 
in order, from smallest (more general) to largest 
(more specific). This set is ordered such that a 
document type is a subset (in terms of structure, 
not content) of the next document type.4 

 

7 Conclusions and future work 

7.1 Improvements  

The expanded POS tagset provides a better 
coverage for the texts in our domain, and the POS 
Tagger component is now trained for the real data 
found in military message databases. 

The new classifier component is much cleaner 
and more efficient. Python provides high-level 
methods to implement regular expressions and use 
                                                             
3 The names of the document types have been replaced by 
alphabetical labels for presentation; in the real system, the 
categories have meaningful labels. 
4 For example, a MEDSITREP (Medical Situation Report) is 
conceptually a kind of SITREP (Situation Report), but a 
SITREP is not a kind of "Free Text", even though the rules for 
"SITREP" and "Free Text" are in a subset relation. 

them to search strings of text, which makes it 
easier to modify the classifier and to add or change 
the rules. 

The results on a new database of messages, 
which were not used to create the classifier rules, 
are encouraging and indicate that we can improve 
the performance of SOP-MRC with little effort. 

7.2 Integration with QBI 

QBI is an improved search interface to the Lotus 
Notes operational log database used at DJFHQ, 
which is developed by the same DSTO team as 
SOP-MRC. We aim to incorporate the output of 
SOP-MRC with QBI by providing a category-
pivoted view of the documents as categorised by 
SOP-MRC. An example of this view is shown in 
Fig. 5.  

The categorised view will allow the users of the 
QBI to quickly find messages in a Lotus Notes 
operational log database by using document types 
to limit their search or to locate the relevant 
message. 

7.3 Other Improvements to SOP-MRC 

The performance of the POS Tagger could be 
improved by pre-processing the messages. Text 
such as "10 KM" could be normalised to "10KM" 
so the POS Tagger can properly tag it <DST> 
rather than <CD> <NN>. This would also help 
improve the classifier’s performance. 

The current implementation relies on a one-to-
one correspondence between classifier rules and 
document types. We are looking at another 
approach, in which a classifier rule would be a 
subset of a number of rules for a few document 
types, in other words we would have a more 
general rule for a set of document types. This 
would correspond to implementing the true 
multilabel classification mentioned in Section 6, 
where the hierarchy of rules also correspond to the 
conceptual hierarchy of document types. 

 



 
 
Fig. 5  Screenshot of QBI with SOP-MRC  

 
If an incoming message matches the more general 
rule, it can then be tested against more specific 
rules. If the message fails to match one of these, 
then other methods can be used to determine the 
more specific document type, but at least the more 
general category can be kept, rather than defaulting 
to "Free Text", as is currently the case.   

Further analysis to determine the more specific 
document type would involve the number of 
certain POS tags, the ordering of these tags or the 
absence of certain tags.   

Another improvement concerns the addition of 
further POS tags for our domain, for example, tags 
for unit names and ranks. This information would 
also be useful in further work on both document 
classification and information extraction. For 
instance, it would allow extracting information 
about which units are involved or identify the 
personnel injured from NOTICAS messages.    

We are also investigating the development of a 
trainable system, using approaches such as TF-
IDF, Rocchio Method, Support Vector Machines 
or hybrid solutions such as Learning from Positive 
and Unlabeled text documents (Jackson and 
Moulinier, 2002; Joachims, 1998; Vapnik, 1995; 
Lee and Lui, 2003). 
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Doc Type Gold Total TP FP FN Recall Precision 

A 1 2 1 1 0 100.00% 50.00% 

B 1 1 1 0 0 100.00% 100.00% 

C 10 6 6 0 4 60.00% 100.00% 

D 2 5 1 4 1 50.00% 20.00% 

E 14 10 3 7 11 21.43% 30.00% 

F 1 2 1 1 0 100.00% 50.00% 

G 6 5 4 1 2 66.67% 80.00% 

H 1 1 1 0 0 100.00% 100.00% 

I 2 2 2 0 0 100.00% 100.00% 

J 1 3 1 2 0 100.00% 33.33% 

K 11 18 7 11 4 63.64% 38.89% 

L 33 16 9 7 24 27.27% 56.25% 

Free Text 1846 1657 1625 32 221 88.03% 98.07% 

M 3 2 2 0 1 66.67% 100.00% 

N 19 28 8 20 11 42.11% 28.57% 

O 2 4 2 2 0 100.00% 50.00% 

P 164 391 131 260 33 79.88% 33.50% 

Q 34 22 13 9 21 38.24% 59.09% 

R 3 3 3 0 0 100.00% 100.00% 

S 32 27 27 0 5 84.38% 100.00% 

T 1 4 1 3 0 100.00% 25.00% 

U 20 30 18 12 2 90.00% 60.00% 

V 5 5 5 0 0 100.00% 100.00% 

W 1 3 1 2 0 100.00% 33.33% 

X 1 2 1 1 0 100.00% 50.00% 

Y 5 2 2 0 3 40.00% 100.00% 

Z 1 11 1 10 0 100.00% 9.09% 

AA 1 1 1 0 0 100.00% 100.00% 

BB 2 3 2 1 0 100.00% 66.67% 

CC 1 1 1 0 0 100.00% 100.00% 

DD 81 31 31 0 50 38.27% 100.00% 

EE 3 4 2 2 1 66.67% 50.00% 

FF 1 2 1 1 0 100.00% 50.00% 

GG 1 1 1 0 0 100.00% 100.00% 

HH 1 1 1 0 0 100.00% 100.00% 

II 13 19 8 11 5 61.54% 42.11% 

JJ 4 3 3 0 1 75.00% 100.00% 

Total 2328 2328      

Appendix 1 SOP-MRC on VP02 

 

 

 

 

 

 

 

 

 

 

 
Doc Type Gold Total TP FP FN Recall Precision 

A 0 1 0 1 0 0.00% 0.00% 
B 0 1 0 1 0 0.00% 0.00% 
C 1 0 0 0 1 0.00% 0.00% 
D 2 0 0 0 2 0.00% 0.00% 
E 10 11 0 11 10 0.00% 0.00% 
F 0 1 0 1 0 0.00% 0.00% 
G 0 1 0 1 0 0.00% 0.00% 
J 0 2 0 2 0 0.00% 0.00% 
K 0 14 0 14 0 0.00% 0.00% 
L 26 10 4 6 22 15.38% 40.00% 

Free Text 2767 2493 2471 22 296 89.30% 99.12% 
M 0 1 0 1 0 0.00% 0.00% 
N 5 26 3 23 2 60.00% 11.54% 
O 2 2 2 0 0 100.00% 100.00% 
P 176 521 167 354 9 94.89% 32.05% 
Q 57 0 0 0 57 0.00% 0.00% 
S 5 1 0 1 5 0.00% 0.00% 
T 0 3 0 3 0 0.00% 0.00% 
U 0 1 0 1 0 0.00% 0.00% 
V 1 0 0 0 1 0.00% 0.00% 
W 0 3 0 3 0 0.00% 0.00% 
Y 0 1 0 1 0 0.00% 0.00% 
Z 0 7 0 7 0 0.00% 0.00% 

AA 14 0 0 0 14 0.00% 0.00% 
CC 1 0 0 0 1 0.00% 0.00% 
DD 50 10 1 9 49 2.00% 10.00% 
EE 2 16 0 16 2 0.00% 0.00% 
FF 1 0 0 0 1 0.00% 0.00% 
II 3 1 0 1 3 0.00% 0.00% 
JJ 5 1 1 0 4 20.00% 100.00% 

Total 3128 3128           

Appendix 2  SOP-MRC on TT01 
 


