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Abstract

This paper presents the area under
the Receiver Operating Characteristics
(ROC) curve as an alternative metric
for evaluating word sense disambigua-
tion performance. The current met-
rics – accuracy, precision and recall –
while suitable for two-way classifica-
tion, are shown to be inadequate when
disambiguating between three or more
senses. Specifically, these measures
do not facilitate comparison with base-
line performance nor are they sensitive
to non-uniform misclassification costs.
Both of these issues can be addressed
using ROC analysis.

1 Introduction

Word sense disambiguation (WSD) is one of the
large open problems in the field of natural lan-
guage processing, and in recent years has at-
tracted considerable research interest (Ide and
Veronis, 1998). The increasing availability of
large corpora along with electronic sense invento-
ries (such as WordNet; Fellbaum (1998)) has per-
mitted the application of a raft of machine learn-
ing techniques to the task and provided an em-
pirical means of performance evaluation. Until
recently, most performance evaluation was con-
ducted on disparate data sets, with only the line
and interest corpora being used in a significant
number of studies (Leacock et al., 1993; Bruce
and Wiebe, 1994). SENSEVAL, a global eval-
uation performed in 1998 (Kilgarriff, 1998) and
again in 2001 (Edmonds and Cotton, 2001), pro-
vided a common set of disambiguation tasks and
performance evaluation criteria, allowing an ob-
jective comparison between competing methods.

These workshops included the tasks of disam-
biguating all words in a given text (the all-words
task), and disambiguating each occurrence of a
given word when it appears with a short context of
a few surrounding sentences (the lexical sample
task). Performance in the two tasks was measured
in terms of precision and recall. Precision was de-
fined as the proportion of classified instances that
were correctly classified, and recall as the propor-
tion of instances classified correctly – these allow
for the possibility of an algorithm choosing not to
classify a given instance. This evaluation criterion
is insensitive to both the type of misclassification
(is the predicted sense more closely related to the
correct sense than other possible senses?) and the
confidence with which the classifier has made the
prediction (is the correct sense allocated a high
probability despite not being given the highest
value by the classifier?).

These problems led Resnik and Yarowsky
(1999) to suggest an evaluation metric to provide
partial credit for incorrectly classified instances.
They penalise probability mass assigned to incor-
rect senses weighted by what they term the com-
municative/semantic distance between the that
predicted sense and the correct sense. Using
such measures, systems that confuse homographs
would be penalised most heavily, while those that
confuse fine-grained senses would only attract a
minor penalty. The score assigned to a particu-
lar algorithm is highly reliant on the distances be-
tween senses; altering the relative penalties may
well promote a previously non-optimal classifier
to be the best performing classifier.

In order to highlight the problems in the exist-
ing evaluation methods, it is worth clarifying the
qualities such a method should possess. Ideally,
the evaluation metric should provide the follow-
ing features:



(1) allow comparison of the performance of two
or more classifiers on the same problem,
ranking them in order of quality of prediction.

(2) penalise incorrectly classified instances based
on the distance, or confusability between the
predicted and correct sense, when disam-
biguating between three or more sentences.
These penalties are henceforth referred to as
(non-uniform) misclassification costs.

(3) allow comparison to baseline performance –
that of the classifier which always predicts
only the a priori majority sense.

(4) provide a readily interpretable measure of
performance.

This paper analyses the metrics that have been
used in assessing WSD performance in light of
the above criteria. An alternative metric, Receiver
Operating Characteristics (ROC), is proposed and
shown to have favourable properties with respect
to the criteria. Section 2 describes the shortcom-
ings of the current metrics. Section 3 shows how
ROC analysis can be applied to WSD evaluation.
Section 4 provides a discussion in the context of
empirical studies and I conclude in section 5 with
thoughts for future study.

2 Problem Statement

Many comparisons of WSD performance use pre-
dictive accuracy as the sole means of compari-
son. Accuracy is defined as the proportion of in-
stances that were disambiguated correctly, and is
often compared to a baseline – the performance
of the classifier that predicts the majority sense
for every instance. Baseline performance varies
greatly between words: from lower than 10% to
greater than 90%. Without some form of normali-
sation, comparison of the results of different clas-
sifiers on different problems is impossible. The
kappa statistic (Carletta, 1996) may be used to
normalise accuracy, adjusting the result for the
expected agreement with the perfect classifier by
chance, thus satisfying criterion (3).

Implicit in the use of accuracy is the assump-
tion that misclassification costs are equal (or
equivalently, the set of senses are all equally simi-
lar to one another). Dictionary definitions and in-
deed, linguistic intuitions, tell us that some sense
pairs are more closely related than others. A

number of dictionaries present sense hierarchies
for words based on their similarities. The guide-
lines used by lexicographers to determine what
constitutes a homograph or sense vary consider-
ably between dictionaries. Even individual lexi-
cographers differ in their systematic preferences
as to whether they conflate similar senses into
one (‘lumpers’) or present them as a disparate set
(‘splitters’) (Kilgarriff, 1997; Landau, 2001). De-
pending on the dictionary’s purpose, factors such
as frequency of occurrence, semantic and syntac-
tic similarity, pronunciation and etymology of a
given word are considered (with differing prior-
ity) when identifying word’s senses. Accordingly,
sense definitions are rarely compatible between
different dictionaries (or thesauri), presenting is-
sues for WSD tasks using only a single source as
the sense inventory.

For a binary disambiguation task, misclassifi-
cation costs should be uniform – we would not
expect the cost of misclassifying an instance of
sensea as senseb to be any different to the cost of
misclassifying an instance of senseb as sensea.1

However, most words have many more than two
senses; Zipf (1945) found the most commonly
used words tend to have a much greater degree
of polysemy than infrequently used words. While
accuracy provides a good measure for compari-
son (satisfying criterion 1) and is simple to com-
prehend (4), it does not account for non-uniform
classification costs (2), meaning that the ranking
given will often not reflect the real costs of errors.

2.1 Precision and recall

These problems with accuracy led to the adoption
of precision and recall instead of (or in addition
to) accuracy for performance measurement. The
combination of precision and recall have been
used as the primary means of performance eval-
uation in the SENSEVAL exercises.

Precision and recall are commonly used met-
rics in information retrieval (IR) (Baeza-Yates
and Ribeiro-Neto, 1999). The retrieval task often
involves finding a small number of relevant doc-
uments from a large data repository. Algorithms
are ranked based on their precision/recall trade-
off; an algorithm can be said to be better than
another if it has higher precision (recall) for the

1This may not be true for all WSD tasks.



same or higher recall (precision). This provides
only a loose ranking capacity (criterion 1).

Precision by itself is not a highly relevant mea-
sure in WSD as it focuses solely on the positive
classifications, treating the negative instances as
junk. Unlike IR classification, when disambiguat-
ing two senses of an ambiguous word, the set of
positives is equally important as the set of nega-
tives, since each corresponds to a distinct sense.
The classification question could just as easily be
phrased in the negative – this should not affect
the performance measure. While high recall on its
own would constitute a passable WSD method (in
that the set of positive instances are largely cor-
rectly classified), high precision alone does not
say much about the performance of the method.
Simply selecting a single correct positive instance
will yield the best possible precision, however,
this method will perform woefully.2 Similarly,
classifying all instances as positive will achieve
a recall of 1.0 and a precision of Pr(P ) – the pro-
portion of positive instances. As with predictive
accuracy, the precision would need to be inter-
preted with respect to the baseline performance to
allow comparisons between different tasks (hence
having issues with criterion 3).

When extended to classification of three or
more senses, these measures falter. In the case of
SENSEVAL, the precision is redefined as the pro-
portion of correctly predicted senses within the
set of instances for which the algorithm hazarded
a prediction, and recall as the proportion of cor-
rectly predicted senses over all instances. This
implicitly allows classifiers to opt not to classify
every instance. However non-exhaustive classi-
fiers are of limited use, given that they must be
combined with other classifiers in order to fully
disambiguate a given text. Many tasks in which
WSD forms a sub-task, such as machine trans-
lation (MT), require the word to be fully disam-
biguated – an unknown value is unacceptable.

Plotting the precision-recall curves (Manning
and Schutze, 2000) allows for better performance
ranking by optimising precision for a given level
of recall. This goes some way in addressing the
issues when assessing precision and recall with
respect to criterion (1), however the problem ex-

2Note also that selecting nothing will not yield a preci-
sion value at all, due to a division by zero.

ists as to what recall limit is acceptable – there is
no theoretical justification for choosing a specific
value, and modifying the value may well alter the
rankings of the classifiers. The F-measure (a har-
monic mean between precision and recall), may
be used for simpler ranking providing a single
number for comparison (4). However the weight-
ing assigned to precision and recall in the calcu-
lation of the mean needs to be chosen and again,
theory does not suggest what values to use.

Criterion (2) is not satisfied by this evaluation
metric. The precision and recall values for dis-
ambiguation tasks involving three or more senses
are based on the number of correct responses, ig-
noring the types of misclassification. Hence this
method suffers for the same problems of predic-
tive accuracy in this regard. Combining precision
and recall measured for a number of binary dis-
ambiguation tasks for a single word (either be-
tween every pairing of senses or between each
sense and all other senses) may go some way
to satisfying (2) while remaining sensitive to the
misclassification costs.

2.2 Semantic/communicative distance

Due to the insensitivity of accuracy and precision
and recall to non-uniform misclassification costs,
Resnik and Yarowsky (1999) proposed a metric
incorporating the costs by weighting misclassifi-
cation penalties by the distances between the pre-
dicted and correct senses. In such a manner mis-
classifications between fine-grained senses (eg.,
polysemy) will be penalised less harshly than
those between coarser sense distinctions (eg.,
homonymy). They describe a sense hierarchy for
the word bank derived from a single or multiple
dictionaries, from which they derive a matrix of
semantic distance between the senses.

The definition of a sense is a contentious issue
within the field. The required granularity of sense
distinctions varies with the task in which WSD
is used. IR and speech synthesis require only
coarse sense distinctions, however for MT and
full text understanding much finer distinctions are
required – often finer than offered by monolin-
gual dictionaries. This would mean that the set
of senses and the misclassification costs between
senses, as approximated by the semantic distance,
will be task dependent.

In most sense-tagged corpora, sense definitions



have been taken from dictionary meanings or the-
saurus categories. Granularity aside, these defini-
tions have been criticised for the level of disagree-
ment between lexicographers themselves (Kilgar-
riff, 1997). These result in markedly different de-
scriptions of senses in different dictionaries, with
no one dictionary offering a definitive set of sense
description or more formal representation than all
others. There is no reliable method of combining
dictionary senses to reflect the level of granularity
required by the task.

Resnik and Yarowsky went on to analyse the
translation of different senses of a sample of am-
biguous English words into 12 target languages.
From this they estimated the probability of the
senses being lexicalised differently in the trans-
lation into the target language. They found that
between 52% (fine-grained polysemy) and 95%
(homonymy) of senses were lexicalised differ-
ently on average in the target languages. They
used these statistics to generate semantic dis-
tances between senses, reflecting the likelihood
that the sense will have a different translation.

In such a scoring model the ranking of classi-
fiers is highly sensitive to the sense hierarchy def-
inition and its use in creating the distance matrix.
If either of these were to change – and given the
widespread disagreement between lexicographers
with regard to sense definitions, this is highly pos-
sible – the set of classifiers would need to be re-
ranked. Even when using the translation based
measure of semantic distance, the use of a dif-
ferent set of target languages would be likely to
affect the scoring. This has the potential to cause
previously non-optimal classifiers to be re-ranked
as optimal.

The semantic/communicative distance measure
improves on the accuracy measure in that it ac-
counts for non-uniform misclassification costs
(2), while still providing a ranking measure (1).
Translation based semantic distance measures
sidestep a number of the issues involved with the
use of dictionary sense inventories but are not
without problems. The method still requires nor-
malisation with the baseline performance (3), al-
though the kappa statistic could also be used here.
What is lost is simplicity (4) – the score assigned
is not readily interpretable, as it is based on the
distance matrix, an artificial construct based on
unfounded assumptions.

3 ROC, an alternative metric

Receiver Operation Characteristic (ROC) graphs
are an evaluation technique born in the field of
signal detection which have become de rigueur
in machine learning in recent years (Provost and
Fawcett, 1997; Provost and Fawcett, 2001). A
ROC graph plots the tradeoff between true pos-
itive rate and false negative rate in a binary clas-
sifier as a threshold value is modified. The true
positive rate (TPR, or recall) is defined as the pro-
portion of positive instances predicted as positive.
The false positive rate (FPR, or fallout) is defined
as the proportion of negative instances predicted
as positive. The rationale behind graphing the re-
lationship between these two factors for a given
classifier is that various uses of the classifier may
demand different optimisation criteria – such as
maximising the TPR given a highest acceptable
FPR, or finding the optimal classifier given the
costs of errors and class distribution.

Provost and Fawcett described an algorithm
for creating a ROC curve for a binary classifier
and introduce the ROC convex hull (ROCCH), a
method for determining the set of potentially opti-
mal classifiers regardless of the misclassification
costs and class distributions. Srinivasan (1999)
extended ROC analysis to deal with non-binary
classifiers, representing the rate by which each
class is traded off for another class as each axis
of ROC space. This leads to c2

− c dimensional
ROC space, where c is the number of classes. The
ROCCH can be calculated in O(nc) time, where
n is the number of points in ROC space.

The sheer difficultly of visualising such high
dimensional space prompted Fawcett to develop
an alternative process. The area under the ROC
curve (AUC) represents the probability that a bi-
nary classifier will rank a randomly chosen posi-
tive instance higher than a randomly chosen neg-
ative instance. This assigns a high score to
those classifiers which form the majority of the
ROCCH, or are consistently close to the hull.
Fawcett (2001) extended AUC to cater for mul-
tiple classes by treating a c-dimensional classifier
as c binary classifiers (each performing a one-vs-
all classification), giving:

AUCtotal =
∑

i

AUC(ci) · Pr(ci)



where Pr(ci) is the prior probability of the i-th
sense.

WSD performance can be measured by the
AUC metric, or by comparing a number of classi-
fiers’ performance curves in ROC space. Where
the misclassification costs are known, the opti-
mal classifier can be found simply by finding the
point on the ROCCH with the lowest cost. The
cost is simply the sum of the penalties assigned
to incorrect classifications, which may be calcu-
lated from the semantic/communicative distances
between senses as:

∑

i

Pr(ci)
∑

j

rijdij

where rij is the proportion of instances of sense
i classified as sense j, and dij is the distance be-
tween senses i and j, which is zero when i = j.

Where the misclassification costs are unknown
or are not known precisely (as would be the case
if Resnik and Yarowsky’s was supplemented with
confidence ranges for each cost), the ROCCH al-
lows performance comparison between the dif-
ferent classifiers. The optimal sub-surface of the
ROCCH can be found using the misclassification
cost ranges meaning that only classifiers forming
part of this sub-surface can be optimal. When
the sub-surface is sufficiently small (i.e. the mis-
classification costs are known to a high degree of
confidence) this should provide a good ranking
of classifiers, as only a small number will form
part of the optimal surface. This allows optimisa-
tion of learning methods that cannot incorporate
non-uniform misclassification costs, as well as al-
lowing optimisation where these costs are only
known approximately and thus cannot be easily
incorporated into classifier training. Storing the
ROCCH allows this approach to be repeated if
misclassification costs were to change.

When the sub-surface is quite large (i.e. when
misclassification costs are not known precisely),
it is likely that a number of classifiers will lie on
the optimal surface. The AUC could then be used
to discriminate between these classifiers, rank-
ing those classifiers which are consistently closer
to the ROCCH higher than those which are not.
While the AUC doesn’t strictly indicate optimal-
ity, it does provide a reasonable approximation.

This method allows comparison and loose

ranking of classifiers (criterion 1), in that a num-
ber of classifiers can be discarded. Given pre-
cise misclassification costs (2), the classifiers (and
indeed combinations of classifiers) can be read-
ily ranked. The baseline performance is implic-
itly used in the analysis: only those classifiers
which achieve better results than (weighted) ran-
dom combinations of the trivial classifiers will be
considered (3). This method has the added bene-
fit of being robust in the face of changing or im-
precise misclassification costs. While it does not
provide a readily interpretable measure (4), espe-
cially when considering the convex hull in high
dimensional space, the AUC can provide such a
measure.

4 Empirical results and discussion

I have implemented three supervised WSD meth-
ods and analysed their performance using the
three measures described above. All development
was performed in the Natural Language Toolkit
(Loper and Bird, 2002) and the source code is
available as part of the toolkit. I implemented
Yarowsky’s (1994) decision list method, which he
used for accent restoration in French and Spanish
text (roughly similar to homograph disambigua-
tion). This method uses the single most reliable
piece of evidence in predicting the sense. I also
implemented Brown et al.’s (1991) method, which
was used for MT between French and English us-
ing decision trees to resolve the correct translation
of each ambiguous word. Training uses the flip-
flop algorithm (Nadas et al., 1991) to determine
which feature will maximise the mutual informa-
tion between a binary division of the values for
that feature and the set of most probable senses
given the feature takes one of those values. Both
of these methods used collocates in a small win-
dow around the word as features. Lastly, I created
a naive Bayes classifier (Manning and Schutze,
2000), using the unordered bag of words around
the ambiguous word as the feature space. Words
occurring fewer than five times in the corpora
were ignored.

The three algorithms were compared on the in-
terest corpus (Bruce and Wiebe, 1994). The word
interest has six senses in the corpus with differing
degrees of similarity to each other. Four experi-
ments were performed; the first involved disam-



sense of interest f test1 test2 test3 test4
give attention 15% X X X

worthy of attention 1% X X

receiving attention 3% X

advantage 8% X X

share of company 21% X X

money 53% X X

baseline 97% 85% 72% 52%

Table 1: Test descriptions and baselines.
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Figure 1: Learning curves

biguating between a pair of fine senses, which re-
ported were difficult for human annotators (Bruce
and Wiebe, 1998), and the second and third in-
volve pairs of more distinct senses. The last test
involved disambiguating between all six senses.
Table 1 shows the gloss for each sense and the
senses used for each test.

The learning curve, show in Figure 1, was con-
structed (in the same vein as Mooney’s (1996)
performance survey), showing the accuracy of
each method on test 4 when trained with increas-
ing amounts of data. It shows all three methods
improving, with only the decision tree method
showing signs of over-fitting. The accuracy, pre-
cision, recall and AUC values were measured and
are shown in Table 2. Each test was performed
using 10-fold cross validation. The precision, re-
call and AUC values were calculated with respect
to the minority sense for tests 1 - 3. In test 4 both
precision and recall are equal to the accuracy, as
all three classifiers predict a sense for every in-
stance. ROC curves were generated by ranking
each instance (and predicted classification) in or-
der of confidence, using the method described by
Provost and Fawcett (2001), from which the AUC
measures were calculated. The ROC curves for

tests 1 - 3 are shown in Figure 2.
The decision list classifier is shown to be sig-

nificantly more accurate than the other classifiers,
exceeding the baselines for all tests, and perform-
ing extremely well for test 3. The results for test
1 are interesting in that the decision list method
manages to outperform the baseline performance
of 97%. With so few instances no solid conclu-
sions may be drawn, however, the high AUC for
the decision tree method suggests that it would
perform better (in terms of predictive accuracy)
by adjusting its threshold. This would allow it to
operate at a more suitable point on its ROC curve,
rather than at the origin.

The increase in performance of all methods
from test 2 to 3 is most likely due to the increase
in data. There are roughly three times as many
instances in test 3, providing more training exam-
ples. Otherwise, the problems are quite similar,
with similar ratios between the two senses. The
AUC values support these conclusions, with the
decision list and decision tree consistently outper-
forming naive Bayes for the first three tests. This
can also be seen in the ROC curves (Figure 2),
where these two classifiers largely dominate naive
Bayes. Naive Bayes has a quite low AUC on all of
the tests, while still being greater than the bench-
mark of 0.5. This is reflected in its lower accuracy
in each test, however, in test 4, it outperforms the
decision tree method despite having a much lower
AUC. This suggests that the naive Bayes classifier
is operating closer to the point which maximises
accuracy on its ROC surface, whereas the deci-
sion tree is not. As earlier, this result suggests
that the decision tree classifier should be operat-
ing with a lower threshold to achieve a higher ac-
curacy. This is also evident in Figure 2, where the
curve for the decision tree method, while largely
dominated by the decision list curve, is still quite
close to the ROCCH.

The highest accuracy classifier would fall on
the ROC convex hull at a very steep gradient,
due to the minority sense being treated as positive
(m = TPR

FPR
= Pr(sb)

Pr(sa) where sa and sb are the mi-
nority and majority senses respectively). If mis-
classification costs were biased in favour of the
minority sense, the difference in performance be-
tween the decision list and decision tree methods
would be likely to be reduced, as can be seen from



test1 test2 test3 test4
DL - accuracy 97.8 89.1 96.4 85.7

precision 0.8 31.1 26.5 85.7
recall 27.8 83.5 89.1 85.7
AUC 78.1 91.9 95.1 95.6

DT - accuracy 97.0 85.2 95.1 72.0
precision 0.0 27.9 25.4 72.0

recall 0.0 72.8 84.1 72.0
AUC 89.3 83.7 88.5 91.1

NB - accuracy 65.6 78.1 94.3 76.2
precision 3.3 37.1 26.3 76.2

recall 83.3 89.0 86.8 76.2
AUC 53.1 67.4 67.6 60.0

Table 2: Results expressed as percentages.

the proximity of their ROC curves at low gradi-
ents. The decision list classifier is shown to be
superior to the other two, with higher AUC val-
ues on most tests and can be seen to be largely
dominating the ROCCH for test 2 and test 3. If
the misclassification costs are known at the time
of training, a number of learning methods (i.e.
naive Bayes) can incorporate them into the train-
ing phase, optimising the classifier with respect to
these costs. However, this is not possible for all
classifiers, requiring the use of ROC analysis to
select the optimal classifier.

While the accuracy, precision and recall mea-
sures are relatively useful for analysing tests 1 - 3
(assuming uniform misclassification costs), they
are not very useful in test4. The manner in which
they aggregate the set of incorrect classifications
together loses a great deal of information about
the classifier performance. The additional effort
required in performing ROC analysis is well re-
warded, with much more informative measures of
performance.

5 Conclusion

The nebulous nature of the word sense along
with differing lexicographic practices mean that
the task of WSD is ill-defined. Both dictio-
nary and corpus based definitions of word senses,
while not always agreeing on sets of senses for a
given word, do concur that some sense pairs are
more closely related than others. These relation-
ships have been quantified in deriving the seman-
tic/communicative distance matrix.
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ROC analysis proves to be a viable method for
analysing performance, addressing a number of
shortcomings with the existing measures. It has
been shown to be of particular value in measur-
ing performance when disambiguating between
three or more senses. It satisfies the objectives of
ease of comparison (1), taking misclassification
costs into account (2) and implicitly incorporates
baseline performance (3), while providing a sim-
ple and understandable measure (4) through the
AUC. It has the added benefit of being flexible
in the face of changing or imprecise misclassifi-
cation costs. This is of particular significance in
WSD given the vigour of the debate over what
constitutes a sense, and as to how senses relate to
each other. However, ROC analysis suffers from
complexity in the form of high dimensional ROC
space and computational demands in finding the
convex hull.

SENSEVAL, and indeed the whole WSD field,
stand to benefit from using ROC analysis as a per-
formance metric. Further research into ROC anal-
ysis and its application to WSD and other natural
language processing tasks can only help the field
mature.
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