
"No Better,  but no Worse, than People" 

David D. McDonald 

University of Massachusetts at Amherst 

1. Generation versus Understanding 

Natural language understanding and natural language generation could employ the same 

knowledge of language. 1 They could even represent their knowledge in the same way, 

provided that it was a nonprocedural encoding. 2 However, the two processes that draw on the 

knowledge cannot be the same because of the radical differences in information flow: Decision- 

making is a radically different kind of process than hypothesis maintainance. Understanding 

proceeds from a sequentially scanned text to content and intentions; generation does just the 

opposite. Understanding processes must cope with ambiguity and underspecification, 

problems that do not arise in generation (i.e. an audience receives more information from 

situationally controlled inferences than from the literal text). Generators on the other hand must 

on some basis choose from an oversupply of syntactic and lexical mechanisms all the while 

remaining consistent with the constraints imposed by grammaticality, linear order, and stylistic 

convention--a classic planning problem that now invites careful solutions closely tuned to the 

special demands of natural language. 

Neither process is particularly more heuristic in its judgements than the other. If generation 

appears more algorithmic, it is because of the weakness of the present models of intentionality, 

situation, lexical sources, and especially audience reactions. People have no assurance that their 

1 Presently they don't--generation uses more. Generation demands knowledge of the conventions and 
heuristics of language use, but understanding systems today do not attempt to recover any such assessments 
of why speakers say what they do in the particular manner that they do. They don't have to--the programs 
they are presently working for wouldn't appreciate the information if they did. 

2 My own candidate for the neutral, shared encoding would be a catalogue of all the minimal elementary 
surface structure trees of the language, plus the rules that govern how they can be combined, e.g. a Tree 
Adjoining Grammar. Paired with each tree fragment would be a mapping function associating it with the 
situations in which its use was appropriate for the individual speaker. Besides my own use of TAGs 
(McDonald & Pustejovsky, 1985), this framework is a reasonable description of at least the Phran and Phred 
systems at Berkeley (Jacobs, 1985), and Doug Appelt's (1985) use of functional unification grammar. 

221 



choice of what to say will be effective; when programs have richer models they won't be certain 

either. For all but the most mundain tasks, the complexity of the circumstances will preclude 

timed procedures. Instead, our programs will have to do what we appear to: make their choices 

heuristically, anticipating how the rest of the discourse will go if their assumptions are correct, 

and being prepared to adjust if it turns out that they are not. 

Any conclusion other than that the same knowledge structures underly both understanding 

and generation would be a drastic philosophic jump from our common view of language as an 

interpersonal medium and an interface to thought. Any difficulties we presently have in making 

the same structures "go both ways" reflects weaknesses in our conceptual designs rather than 

facts about people. In particular, present target representations for understanding are 

impoverished: inverting them leads to badly underspecified messages since they contain no 

information about deliberately adopted perspectives or connotated information (such as newness 

or value judgements), and very little about what the original speaker's goals were. 

2. Genera t ion  is special. 

To do good work in generation one is forced to come to grips with problems that other 

tasks are today able to ignore. Three examples: One cannot work on generation and ignore 

syntax. One cannot avoid accounting for the control of variation in linguistic form through 

appeals to synonomy or cannonical form. One cannot passively accept the semantic 

representations of one's colleagues' knowledge-based reasoning systems without first 

determining that they are notationally and epistemologically able to support the distinctions that 

language makes. 

It is not clear to me that these are the sorts of issues that will draw the otherwise reluctant 

linguist to consider AI, but they without question draw the AI people who work on them to 

linguistics. Proficiency in the technicalities of syntax and morphology is obligatory in 

generation research. More importantly, generation people must have a linguist's skill at arguing 

the consequences of alternative theoretical decisions: Working as we do from empirically 

222 



unestablished models of intention and knowedge out to text, we have to justify our designs 

using indirect evidence and comparative reasoning, something that linguists are well trained for. 

This difficulty is in other respects a great advantage (one that linguists in my experience 

well appreciate) when we are working on today's cutting edge problems in computational 

linguistics, such as the structure of discourse or the signaling of intended inferences and their 

relationship to underlying knowledge of the world and social behavior. Our established tools 

such as example-driven comparative analysis do not fare well on these problems because of the 

enormous number of factors that contribute to them. Descriptive theories of underlying abstract 

structure are unsatisfying because the abstractions are slippery to evaluate. 

What they need is the synthetic approach provided by generation. The generation process 

converts abstract structures into concrete texts whose properties we can evaluate empirically. 

Theories of discourse now can stand or fall on whether they lead to effective conversations, 

theories of inferencing on whether texts based on them do evoke the intended conclusions. 

3 .  T w o  n o n - p r o b l e m s  

The possibility of a program somehow generating things that no human could understand is 

a red herring.3 People say things all the time that other people don't understand, yet we don't 

think anything unusual is happening. Usually the audience fails to make an expected inference 

rather than misunderstand some literal part of the utterance, a problem that can happen quite 

easily when the speaker misjudges what the audience already knows, or the speaker thinks that 

they share some judgement or context when they do not. Another source of the problem comes 

from the speaker thinking that a certain turn of phrase should signal a certain inference but the 

audience is opaque to that signal. 

3 Since programs wouldn't talk to us if they didn't need to communicate, saying things to us that we don't 
understand would just be failing to achieve their own goals. Perhaps they might choose to talk this way to 
each other (though why should they, since given any commonality in their internal designs, telepathy would 
be much simpler and more satisfying), but if we give them any sensitivity to their audience's reactions (and 
how could communication be effective without it) they will quickly realize that we're missing the point of 
most of what they're saying to us and change their techniques. 

223 



The very same mistake could be made by a program--we cannot program them to be 

superhumanly aware of their audience. The only protection is incorporating into language 

interfaces the same kind of sensitivity to later audience reactions that we have ourselves. We 

know what the effect of following our inferences should be on our audiences, and we can sense 

when they have missed our intent. We especially know how to feed back a communications 

failure onto our own generation strategies so that we will make different choices the next time 

we need to get across a similar idea. We should make our machines able to do the same. 

The problem of how best to match a system's input and output language abilities is likely to 

turn out to be a red herring as well, one that will go away naturally as soon as our 

understanding systems become as syntactically and lexically competent as our generators. 4 The 

problem is that presently if the generator produces a more sophisticated construction than the 

understander can parse or uses a word that it does not know, then the human user, mimicing 

what the generator has done, will be frustrated when he turns out not to be understood. 

If this were the only difficulty, then it could be solved by straightforward software 

engineering: consistency tools would force one to drop items from the generator's repertoire 

that the understander did not know. Unfortunately the problem goes deeper than that. The 

mismatch is not the issue, since people's abilities do not match either: we all can understand 

markedly more than we would ever say. The real problem for a non-research interface is--direct 

queries for literal information aside--that machine understanding abilities are so far below the 

human level that any facile, inference motivating output from the generator is going to suggest 

to the user that the system will understand things that it cannot. 

Because of this, I personally would never include language input in a non-research 

interface today. Interactive graphics and menu facilities do not suffer from the ambiguity and 

scope of inferencing problems faced by language, and give a realistic picture of what a system 

is actually able to comprehend. Interfaces based on a "graphics in, graphics and speech out" 

4 It is trivial to specify a linguistically complex phrase and have a generator utter it by rote. Such canned or 
template-based text is often the best route to take in a practical interface. If the programmer is sure that the 
situation warrants the phrase then it can safely be used, even though there may be no explicit model within 
the system from which the phrase could have been deliberately composed. 

224 



paradigm have not been given enough study by the language and communications research 

community, and are likely to be a much better match to the deliberative and intentional abilities 

of the programs we can experiment with today. 

4. Controling Decision-making 

There are volumes to be said on how one could or should control for syntactic and lexical 

choice--this is the primary question that any computational theory of generation answers. 

Rather than attempt to summarize my position in the little space that remains, let me point out 

two issues that I believe distinguish much of the work presently going on; for a larger 

discussion of these see McDonald, Vaughan, and Pustejovsky (1987). 

The first issue is whether one attempts to make psychological claims with the form and 

operation of the generator. This is the more demanding road to take. It may also turn out to be 

the only one that provides for continuous extension and elaboration. Language, like vision, 

may be so tied up with the nature of the human mind and its computational properties that no 

design that goes against those properties will ever be more than a special purpose hack. Making 

claims with a computational process requires one to take exceptional discipline in designing the 

operations and representations it will use. Much of the explanatory load will be taken on by the 

restrictions on the mechanism's behavior, and these can be easily diluted by the kinds of 

programming conveniences that make a generator easier to engineer. Adopting a psychological 

point of view can thus retard efforts to make a generator more competent. 

The second issue is how much generation knowledge is to be found in the non-linguistic, 

"underlying program" in whose service the generator is operating. The more that we take to be 

there, the greater the burder we place on our knowledge-based system colleagues to make sure 

that it is included; however our theories may have very good reasons for requiring it. This 

knowledge might be the direct encoding of rhetorically relevant structural relations: How deeply 

do we believe that the notions of "compare and contrast" are to be found in the mind or should 

be found in a program? It might be of lexical identities: Are the conceptual primitives of the 

underlying program fine-grained and closely matched to real words, or large-grained and 

225  



abstract? It might also be in the modularity of the underlying system's information: Is it 

propositional and easily mapped onto kernel clauses and noun phrases, or does it have some 

drastically different organization? 

Generation research today has the lion's share of the important computational linguistics 

problems. As more and more people work in it, it will quickly become the cutting edge, forcing 

extensions on understanding and knowledge representation if they are to match it as a source of 

insight into the nature of language and thought in the human mind. There is no appropriate goal 

for generation research short of matching human performance, part of which entails coming to 

understand the limits on that performance. We don't really know how good people are at using 

language; our experiments with mechanical speakers may someday tell us. 

5. References 

o Appelt, Doug (1985) Planning English Sentences, Cambridge University Press. 

Jacobs, Paul (1985) "PHRED: A generator for natural language interfaces", Berkeley 

Computer Science Department TR 85/198. 

McDonald, David & Pustejovsky, James (1985) "TAGs as a Grammatical Formalism for 

Generation", proc. ACL-85, Chicago, 1985, 94-103. 

, ,  & Vaughan, Marie (1987) "Factors Contributing to Efficiency in Natural 

Language Generation", in Kempen (ed) Papers from the Third International  

Workshop on Language  Generat ion,  Martinus Nijhoff Press (Kluwer), The 

Netherlands. 

226 


