
C O M I T = = : ~ P A T R II
Gerald Gazdar

University of Sussex

Here is the history of linguistics in one sentence: once upon a time linguists (i.e. syntacti-
clans) used augmented phrase structure grammars, then they went over to transformational gram-
mars, and then some of them started using augmented phrase structure grammars again, (space
for moral~. Whilst we are in this careful scholarly mode, let us do the same service for computa-
tional linguistics: once upon a time computational linguists (i.e. builders of parsers) used aug-
mented phrase structure grammars, then they went over to augmented transition networks, and
then many of them started using augmented phrase structure grammars again, (space for
moral~. There are people who would have you believe in one or other of these stories (e.g.
Chomsky 1983, p65, for the first). And, of course, there is an element of truth in each of them.
If an unrestricted rewriting system is an "augmented phrase structure grammar", then we can say
that Chomsky (1951) propounds an augmented phrase structure grammar 1

Turning to computational linguistics, let us consider two fairly well-known exemplars, one
for the old grammatism (COMIT - Yngve 1958) and one for the new (PARR IN[- Shieber 1984).
Both are computer languages, both were designed for computational linguistic purposes, notably
the specification of natural language grammars with a view to their use in parsers. The two gen-
eral criteria that Yngve explicitly notes as having motivated the design of COMIT, namely "that
the rules be convenient for the linguist -- compact, easy to use, and easy to think in terms of"
and "that the rules be flexible and powerful -- that they not only reflect the current linguistic
views on what grammar rules are, but also that they be easily adaptable to other linguistic views"
(1958, p26) are indistinguishable from two of the three general criteria that motivate the design of
PATR II (Shieber 1985, pp194-197) [the third -- computational effectiveness -- may have been
too obviously pressing in the late 1950s for Yngve to have thought worth mentioning explicitly].
Both have been implemented on a variety of hardware, and substantial grammar fragments have
been written in both. 2

Both COMIT and PATR II are, in some sense, and not necessarily the same sense, aug-
mented phrase structure grammar formalisms. In examining the differences between them, it will
be convenient to divide the topic into (1) consideration of categories, and (ii) consideration of
rules.

Looking at the category formalisms first, both formalisms allow categories to have an inter-
nal feature structure, but there the resemblance ends. A COMIT category consists of a monadic
name (e.g. " N P ") , an optional integer "subscript" , and a set containing any number of
attribute-value pairs (called "logical subscripts"). Attr ibutes are atomic, but values are sets con-
taining between 0 and 36 atomic members. This is a sophisticated and expressive feature system
by contrast to the impoverished phonology-based binary systems that most transformational syn-
tacticians seemed content to assume, though scarcely to use, during the 1960s a n d 1970s. A
P ATR II category, however, is an arbitrary directed acyclic graph (dag) whose nodes are labeled
with atomic names drawn from some finite set. Thus it easy to see how to translate a set of
COMIT categories into a set of P A T R II categories: the only minor complication concerns how
you choose to encode the COMIT integer subscripts. But translation in the other direction is in
general impossible, for all practical purposes, since COMIT logical subscripts do not permit any

I The notation Chomsky used mostly suggests a context sensitive rewriting system which allows null produc-
tions (hence type 0 rather than type 1). However, one nonstandard augmentation that is employed throughout
the work is the "sometimes" notation, as in the following example from page 30.

y2 ..~ y, sometimes
This remarkable innovation does not seem to have found favor in later work except, perhaps, as the precursor
of the "variable rules" that became fashionable in sociolinguistics in the 1970s.

For some example COMIT grammars, see Dinneen (1062), Fabry (1963), Satterthwait (1962), Weintraub
(1970), and Yngve (1967).

39

recursive structure to be built. 3

Switching our at tent ion now to rules, we observe that both COMMIT and P A T R II allow one
to write rules tha t say that an expression of category A can consist of an expression of category B
followed by an expression of category C. But a COMIT rule is a rewriting rule whose primary
concern is that of mapping strings into strings, whereas a P A T R II rule is a s ta tement about a
permissible structural configuration, a s ta tement tha t concerns itself with strings almost inciden-
tally. A rule with more than one symbol on the left-hand side makes no sense in the P A T R II
conception of grammar, but it makes perfectly good sense when the function of a rule is to change
one string of categories into another string, as in the COMIT conception. COMIT rules give you
unrestricted string rewriting, P A T R II rules permit concatenation only. Thus COMIT rules can-
not, in general, be translated into P A T R II rules, and P A T R II rules, thanks to the category sys-
tem employed, cannot, in general, be translated into COMIT rules. COMIT rules are inextricably
embedded in a procedural language: the rules are ordered in their application, every rule has an
address, every rule ends with a GOTO-on-success, and rules can set and consult global variables
in the environment (the "dispatcher") . P A T R II rules, by contrast, are order independent, side
effect free, and pristinely declarative. Both languages allow the user to manipulate features in
rules, but whilst COMIT offers the user a small arsenal of devices - - deletion, complementat ion,
merger - - of which the last-named appears to be the one most used, P A T R II offers only
unification. But are "merger" and "unification" two names for the same concept? The answer
here is no: merge(A,B), where A and B are at tr ibute values (hence sets), is the intersection of A
and B if the lat ter is nonempty, and B otherwise.

There is nothing too surprising in any of the foregoing: as one might expect from the chro-
nology, P A T R II stands in much the same relation to COMIT as Scheme does to Fortran. If any-
one wanted to do COMIT-style computat ional linguistics in 1987, then they would probably be
bet ter off using Icon than they would be using P A T R II. W h a t is distinctive about the new gram-
matism, as canonically illustrated by P A T R II (but also exemplified in CUG, DCG, FUG, GPSG,
HPSG, JPSG, LFG, UCG, ...) is (i) the use of a basically type 2 rule format (single mother, unor-
dered, no explicit context sensitivity) under (ii) a node admissibility rather than a string rewriting
interpretat ion, with (iii) a recursively defined tree or dag based category set, and (iv) unification
as the primary operation for combining Syntactic information.

It would be interesting to learn of any computat ional linguistic work done in the 1950s or 1960s
that exhibits more than one of these characteristics.

Acknowledgements
I am grateful to Geoff Pullum for some relevant conversation and to Victor Yngve for mak-

ing copies of unpublished COMIT work available to me. This research was supported by grants
from the ESRC (UK) and SERC (UI().

References
Chomsky, Noam (1951). Alforphophonemics o/Modern Hebrew. ~ thesis, University of Pennsyl-

vania, Philadelphia, Pennsylvania. Published by Garland, New York, in 1979.

Chomsky, Noam (1983). Noam Chomsky on the Generative Enterprise [in conversation with Riny
Huybregts and Henk van Riemsdijk]. Dordrecht: Foris.

Dinneen, David A. (1962). A Left-to-Right Generative Grammar of French. Unpublished PhD
dissertation, MIT.

s The concern in this paper is only with what each formalism can naturally express, not with what you can
do if you start playing tricks. Since both COMIT and PATR II are Turing equivalent, anything that can be ex-
pressed in the one, can be coded up somehow or other in the other one. Thus, for example, given some Godel-
numbering scheme for dags, every PATR II feature structure could be mapped into a COMIT integer subscript
(ignoring the 2^15 upper bound on the latter). But nobody in their right mind would do this.

4O

Fabry, Robert S. (1963). Sentence Generation and Parsing with a Single Grammar. Unpublished
MA dissertation, MIT.

Satterthwait, Arnold C. (1962). Parallel Sentence-Construction Grammars of Arabic and English.
Unpublished PhD dissertation, Harvard University.

Shieber, Stuart M. (1984). The design of a computer language for linguistic information. Proceed-
ing8 of COLING8~ 362-366.

Shieber, Stuart M. (1985). Criteria for Designing Computer Facilities for Linguistic Analysis.
Linguistics 23, 189-211.

Weintraub, D. Kathryn. (1970). The Syntax of some English Relative Clauses. Unpublished PhD
dissertation, University of Chicago.

Yngve, Victor H. (1958). A programming language for mechanical translation. Mechanical Trans-
lation 5, 25-41.

Yngve, Victor H. (1967). MT at MIT 1965. In A.D. Booth, ed. Machine Translation. Amsterdam:
North-Holland, 452-523.

41

