
Information, Unification and Locality

Fernando C. N. Pereira
Artificial Intelligence Center

SRI International

October 14, 1986

1 Unification Technology

In this discussion, I am wearing the humble hat of a "symbolic systems engi-
neer" who has been involved in building artifacts, unification-based grammar
formalisms, that might be used to describe certain aspects of some natural
languages. In the same way a physicist might see the calculus as one of
many technologies she needs in her scientific pursuits, and mathematicians
as excessively glorified engineers, so it may well be reasonable for a linguist
to look upon computational linguists of my formal persuasion as engineers
building generic language-description tools.

One needs to be clear about the role of mathematical tools in scien-
tific pursuits. Most differential equations one might write correspond to no
physically-realizable system. The calculus imposes only very broad, weak
constraints on the class of systems it can describe, eg. differentiability of
state functions and trajectories. Similarly, there is no reason to believe
grammar formalisms can impose strong lingustically-motivated constraints
on the classes of languages they can describe.

Unification-based grammar formalisms are thus a subject of inquiry re-
lated to but independent from linguistic theory. The kinds of questions
one asks about a formalism are then those from formal language theory
(generative power, recognition complexity) and programming language de-
sign (semantics, expressive capabilities, implementation algorithms and data
structures).

34

2 U n i f i c a t i o n in A b s t r a c t

In a unification framework we deal with a domain of descriptions P tha t are
used to classify objects from some class under analysis 0 , u t terances and
their f ragments in the case tha t concerns us here. Classification is given by
a description relation ~ between objects in 0 and elements of P. If d is a
[partial] description of e, we write e ~ d, e satisfies (or is described by) d.
The set of all objects tha t satisfy a description d is wri t ten [dl.

Descriptions are in general partial, that is, a description d may in general
be extended to a more specific (more informative) description d I. With suit-
able technical assumptions, this gives a partial order d ~ d' on descriptions.
In terms of the description relation ~ , d E d' iff for every object e, e ~ d
whenever e ~ d ~.

Two descriptions d and d' are compatible if there is a description d" such
tha t d _C d" and d ~ _C d", tha t is if d and d' can both be extended to a single
description more informative than both.

If two descriptions d and d ~ are compatible, it is reasonable to assume
tha t there is a least specific description d U d' more specific tha t both d and
d'. In other words, d U d' contains all the information in d and d', bu t no
more. For historical reasons, d t.J d' is called the unification of d and d'. In
more s tandard mathemat ica l terminology, d u d' is the join of d and d'.

In terms of the description relation, if e ~ d it d', e ~ d and e ~ d'.
Fur thermore , we want unification to behave like logical conjunction: if e ~ d
and e ~ d', e ~ d U d'. Thus lid U d'~ = [[d] n [d'~ holds for any compatible
descriptions d and d'.

The domains of objects, descriptions and the description relation are
usually infinite, even though there may be some way of finitely characterizing
the description relation. Such a characterization is a grammar .

To write grammars, we need to be able to constrain entities to satisfy
arbitrari ly complex descriptions without giving the descriptions in full. Our
main ins t ruments for this are parameterized descriptions and rules.

A parameter ized description d(pl,. . . ,pk) is not a description itself, but
ra ther an encoding of a function from k-tuples of descriptions to descrip-
tions. An object e satisfies such a parameter ized description iff there are
descriptions f l , . . . , fk such tha t e satisfies d(f l , . . . , f~). Given a family of
parameter ized descriptions (di)iel with parameters (Pi)i~s and a set C of
constraints involving the parameters , a family of objects (ei)ie I satisfies the
parameter ized descriptions relative to the constraints iff there are descrip-
tions (fi)ieJ tha t can be uniformly replaced for the parameters in such a

35

way that e~ ~ di ((f j) jeJ) and all the constraints in C are satisfied.
In current unification-based formalisms, a grammar is a set of inductive

rules with the general form

El : d l ' " E , , : dn

/ (E l , . . . , E ,) : d
if C

where the El are object variables, d and the d~ are parameterized descrip-
tions, C is a set of conditions on the parameters, and f is a structural
composition function on objects. Given an appropriate notion of allowed
derivation - - a tree with nodes labelled by object-description pairs e : d in
which each node satisfies a rule - - the grammar is sound with respect to a
description relation ~ iff the root e : d of every derivation allowed by the
grammar obeys the condition e ~ d.

The main technical question at this level is whether a given vocabu-
lary of constraints and rules really define the description relation, that is,
whether the rules are well-founded with respect to the structural decom-
position of elements of C) given by the structural composition functions f
and whether there is a least description relation compatible with the deriva-
tions allowed by the grammar. This question has been answered in detail
for definite-clause-based grammar formalisms (in which descriptions are just
logical terms), but the situation is much less clear for more complicated do-
mains (eg. those with disjunctive constraints) and classes of constraints (eg.
LFG's constraint equations).

The preceding discussion may be summarized as follows. Descriptions
classify objects (strings, utterance fragments). Rules give the description
of a compound object in terms of descriptions of its parts. Grammatical
analysis is the derivation of a description for an object according to the
rules of a grammar that axiomatizes the description relation.

3 C o m p u t a t i o n

The discussion of the previous section concerned the denotational seman-
tics of a grammar formalism. The denotational semantics gives a rigorous
specification of what a grammar does. However, from a computational point
of view we are also interested in how a grammar does what it does. This
question can be posed at two levels: at the more abstract level of oper-
ational semantics, the problem is how to give abstract procedures (proof
procedures) that construct derivation trees yielding classifications of objects

36

(utterances); at the more concrete level, what data structures and algorithms
are required for efficient analysis (classification, proof generation).

In some cases, for example in DCGs or PATR-II, the formalism itself
is only semi-decidable, so the procedure given by the operational semantics
may not terminate when it is asked to classify an object with a description
it does not satisfy. However, for reasonable classes of grammars in those
formalisms, as well as for all grammars in LFG, the classification (analysis)
problem is decidable.

Even though LFG as well as all offiine parsable DCGs and PATR-II
grammars are decidable, it has been shown that they are intractable (NP-
complete). The sources of this intractability are rather interesting, and lead
to the question of locality which I will discuss in the next section.

We should not take the undecidability or intractability of unification-
based formalisms as fatal flaw any more than we take the same properties
as fatal flaws in a programming language. From an engineering point of view,
grammar formalisms are just programming languages for grammar writing
in which it is of course possible to write intractable or even nonterminat ing
programs.

Finally, at the most concrete level, we have the question Of what
data structures and algorithms are in practice most useful for analysis in
unification-based formalisms. The problem here is rather more difficult than
that for simpler formalisms such as CFGs.

At an abstract operational level, derivations classifying a given s~ring
can be build very much in the same way as derivations in a context-free
grammar. However, in contrast with CFGs, we have to satisfy not only lo-
cal identity conditions between nonterminals but also rule constraints, which
may have global consequences for the choice of descriptions in the deriva-
tion. In the typical incremental derivation procedures currently in use, rule
applications assign to objects parameterized descriptions whose parameters
may then be filled in by by unifications as specified by constraints and other
rule applications. Alternative derivation paths assign different values to pa-
rameters, requiring some mechanism to segregate the assignments. It is easy
to construct grammars that require space exponential on input length for
storing alternative descriptions of the parts of the input even though the
recognition problem for the grammars in question is clearly linear time with
a specialized algorithm. This problem may well be related to the question
of locality which I discuss below.

37

4 Locality

The intractability of existing unification-based formalisms seems to have
something to do with lack o/locality: constraints on description parameters
are weak enough to allow the construction of (exponentially many) partial
derivations for a string, but strong enough to conspire in rejecting almost all
of those derivations. Basically, constraints chain together to constrain pa-
rameters arbitrarily far apart in a derivation. Lack of locality impinges also
on the implementation data structures, as it allows rule applications to give
alternative values to parameters arbitrarily deep inside a derivation, thus
requiring a costly copying or structure-sharing mechanism to keep separate
the alternative derivations.

Most grammars written in practice do not seem to suffer from lack of
locality. However, it is not very clear why this is so and it is not easy to
recognize lack of locality in a grammar. Even from an engineering point of
view, it would be useful to have precise criteria for locality in a grammar,
with suitable consequences in the complexity department. If locality criteria
could be embodied in formal constraints on allowable grammars, we would
be able to design restricted formalisms with good complexity properties.

The locality question has a more philosophical angle. Nonlocal gram-
mars lead to nondeterministic recognizers. The description of a part of an
utterance is supposed to represent the information contributed by that part
to the utterance interpretation i~rocess. Lack of locality means that the
processor is unable to identify the exact informational contribution of an
utterance element without considering the whole utterance. This is rather
unsatisfactory, as one might expect that the informational contribution of
an object is precisely what can be learned from the presence of the object
without regard to context. Lack of locality in a grammar thus suggests
that we have not been successful in our classification of objects as to their
information-carrying properties. Somehow, correct classification and de-
terminism seem to go together. Current unification-based formalisms are
expressive enough to describe a great variety of languages, but they do not
seem to make all the classificatory distinctions that are needed to pin down
the informational contributions of objects. Alternatively, there may well be
a negative result lurking here that shows the impossibility of exact classifica-
tion of informational content; in this case we should be able to find natural
situations in which nonlocality emerges.

38

