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Abstract

Suggestion Mining is the task of classifying
sentences into suggestions or non-suggestions.
SemEval-2019 Task 9 sets the task to mine
suggestions from online texts. For each of the
two subtasks, the classification has to be ap-
plied on a different domain. Subtask A ad-
dresses the domain of posts in suggestion on-
line forums and comes with a set of training
examples, that is used for supervised training.
A combination of LSTM and CNN networks
is constructed to create a model which uses
BERT word embeddings as input features. For
subtask B, the domain of hotel reviews is re-
garded. In contrast to subtask A, no labeled
data for supervised training is provided, so that
additional unlabeled data is taken to apply a
cross-domain classification. This is done by
using adversarial training of the three model
parts label classifier, domain classifier and the
shared feature representation. For subtask A,
the developed model archives a F1-score of
0.7273, which is in the top ten of the leader
board. The F1-score for subtask B is 0.8187
and is ranked in the top five of the submissions
for that task.

1 Introduction

For getting feedback from costumers or users, an
organization often uses forums and social media
channels. Also ratings of products on rating plat-
forms can be an useful feedback to make a product
better. The feedback from a customer can be in the
form of a suggestion which appears in a rating text
or is directly asked from the customer. The task
of suggestion mining can be defined as the extrac-
tion of sentences that contain suggestions from un-
structured text (Negi et al., 2018). SemEval-2019
Task 9 Subtask A provides the challenge to do sug-
gestion mining on data from an online suggestion
forum. For that subtask, a train and validation set
is provided so that it is possible to apply super-

vised training. For subtask B, suggestions in hotel
reviews should be identified. An additional dif-
ficulty for that subtask is that no labeled data is
given except a small validation set, which is not al-
lowed to be used for supervised training. For both
tasks, silver standard datasets are allowed to use,
which means that data that is likely to belong to a
certain class can be taken as long as it is not manu-
ally labeled. A more detailed task description can
be found in (Negi et al., 2019).

2 Data

The dataset for subtask A provides an overall
count of 8500 examples, where 6415 examples are
labeled as non-suggestion and 2085 as suggestion.
Also a trial dataset is provided that contains 592
examples, divided in 296 examples for each class.
Every example contains only one sentence, which
could be part of a whole post in the forum where
it was extracted.

The domain of software suggestion forum posts
in general provides more balanced data than other
domains, for example hotel reviews. Also the do-
main contains very specific vocabulary which is
frequently used in software development, so that
it can be difficult to use a trained model of this
domain for other domains (Negi et al., 2018).

For subtask B, only a validation dataset is pro-
vided. The set contains an overall count of 808 ex-
amples with 404 examples for each class. As men-
tioned in the introduction, it is not allowed to use
the validation data for supervised learning for this
subtask. The data is only allowed to be used for
model evaluation and error analysis and also for
automatic hyperparameter tuning. The presented
solution in this paper uses the validation data for
early stopping at a fixed count of train steps after
the best score is reached. The model state at the
best score is then returned and used for the predic-
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tion of the test data.
For both subtasks, additional data is allowed

that is not manually labeled. In this work, the hotel
review dataset, which is presented in (Wachsmuth
et al., 2014), is used to apply cross-domain clas-
sification for subtask B. The dataset comes with
nearly 200k examples of hotel reviews without la-
bels.

3 Related Work

The task of text classification improved a lot dur-
ing the last years. In the past, machine learning
techniques like support vector machines were used
to assign a class to a text. In (Joachims, 1998), a
text classification with support vector machines is
presented. For that, a document vector is extracted
for the whole text and used as the feature vector for
the classification.

Since such methods can provide a good base
line today, the increasing popularity of neural net-
work approaches provides new methods that can
classify texts more exactly. Especially the intro-
duction of word embeddings in (Mikolov et al.,
2013) was a big step forward in the field of
text processing and opened new opportunities for
many natural language processing tasks. Also for
the task of text classification, word embeddings
are useful features and can lead to good results.
Since the release of these word embeddings, many
other word embedding approaches have been in-
troduced. A very recent one is shown in (Devlin
et al., 2018) and is called BERT: Bidirectional En-
coder Representations from Transformers. These
embeddings are the result of the training process
of transformer, which is described in (Vaswani
et al., 2017) and delivers a state-of-the-art method
for different natural language generation tasks, es-
pecially for translation.

To use the word embeddings as features for text
classification, a commonly used approach is Long-
short term memory (LSTM), which is described in
(Hochreiter and Schmidhuber, 1997). The advan-
tage of using LSTM cells over support vector ma-
chines as classifier is the processing of features in
time steps. By passing a single word embedding
into a single time step of the LSTM, every feature
is processed separately. Since the features are pro-
cessed one after the other, also the order of the fea-
tures has influence on the classification process. In
addition to that, LSTM cells have a state that en-
ables them to save information for many previous

time steps. For text classification, this can be use-
ful when there are connections between words in
a text that are far apart.

Another method to process word embeddings
are convolutional neural networks (CNN), which
are introduced in (LeCun and Bengio, 1998). With
the ability to extract features of two-dimensional
input data by defining a sliding window of vari-
ables, the method is often used for image process-
ing. But also good results for text classification are
reported, for example in (Kim, 2014). The results
show that even a simple CNN with one layer per-
forms very well and a tuning of hyperparameters
brings an improvement of the performance.

For subtask B, the focus gets in the direction
of methods for cross-domain classification. By
the introduction of Generative Adversarial Nets
(GAN) in (Goodfellow et al., 2014), a new way for
training neural networks was provided that leads
to new opportunities for different task, especially
image generation. In (Chen and Cardie, 2018) is
shown that this training technique could also be
used for cross-domain classification of texts of dif-
ferent domains. As the main four components, a
shared feature extractor, a domain feature extrac-
tor, a text classifier and a domain discriminator
are introduced. The main goal of that system is
to learn a domain invariant feature representation
by training the shared feature extractor with the
discriminator and the text classifier. The discrimi-
nator learns to separate the domains and the train-
ing goal for the shared feature extractor is to in-
crease the loss of the discriminator. The extracted
features become invariant for the domains, so that
the text classifier results improve for the domain
where no labels are given.

4 Models

In this section, the models for subtask A and B are
presented. The overall idea of the model for sub-
task A is using an ensemble of LSTM and CNN
networks. As input features, pre-trained BERT
embeddings for the texts are used.

For subtask B, the idea is to extend the model
from subtask A with a domain discriminator and
shared features. Since that adds a lot of parame-
ters to the model, the text classifier has a simpler
structure than in subtask A and uses only CNNs
for classification. The full TensorFlow implemen-
tation of the models can be found at GitHub.1

1https://github.com/tocab/semeval2019Task9
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4.1 BERT embeddings

For both subtasks, BERT embeddings are used to
create a representation of the text. The Tensor-
Flow implementation, which is openly available
and comes with pre-trained multi-language em-
beddings, is taken for that.2 The model for cre-
ating the embeddings is the small uncased model,
which has been trained on lower cased wikipedia
texts. It has a total count of twelve layers and a
layer size of 768 in each hidden layer. The whole
model has a 110 million parameters in total.

To extract the embeddings out of the model, the
text gets tokenized and mapped into a sequence of
integers by using the vocabulary of the pre-trained
model. This representation is then given into the
network, where it passes the different transformer
layers. The embeddings are delivered by the hid-
den layers of the model. In this project, the output
from the last four layers before the output layer is
taken as the representation of a word, so that ev-
ery word is represented by a vector of the shape
(4, 768).

4.2 Subtask A

For subtask A, a text classification ensemble of
LSTM and CNN is built. To bring all sentences
to the same length, a maximum sequence length
of 40 is defined. With that sequence length, for
around 95% of all train data sentences all words
are taken as input. Only for the remaining 5%
which have more than 40 words, the texts are cut to
the maximum sequence length. If a text is shorter
than 40 words, it is filled with zeros. Using the
batch size of 64, the input shape for a batch for the
training process is (64, 40, 768) for every of the
four extracted input features from BERT.

One problem of the data is the imbalance of the
classes. When taking random batches out of the
whole dataset, it is likely that the count of one
class is always higher than of the other. The al-
gorithm learns to predict the class with the higher
example count with a higher probability. To avoid
that, the technique of oversampling is applied to
the training process. The data is separated into
two sets, each for every of the two classes and then
fed into the network alternately. When all exam-
ples of the class with the lower count were used as
training input, the set gets repeated so that these
examples occur more often as training input.

2https://github.com/google-research/bert

The model structure for subtask A can be di-
vided into the three following main parts:

• Processing of single words with dense layers.

• Processing of the whole text with LSTM
cells.

• Processing of sliding windows through the
text with CNN.

For the processing of the dense layer and the
LSTM, separated graphs are created for each of
the input features from BERT. As mentioned be-
fore, four embeddings for a word are gathered,
each of a different hidden layer of the transformer.
Thus four graphs of dense layers and LSTM layers
are created, each for processing a different embed-
ding type of the input text.

The first step is a transformation of every single
input word with a dense layer. This approach is
applied to focus on single signal words that can oc-
cur in the text. For example, the occurrence of the
word recommend could be a hint for a suggestion,
without regarding other words. The outputs of the
single word processings are concatenated and for-
warded to a dense layer to reduce the dimension.

The LSTM is represented by two cells to re-
alize a bidirectional approach. The output of
the two cells is concatenated and followed by a
GlobalMaxPool-Layer, which takes the maxi-
mum of the output’s timestep axis to bring it into
a one-dimensional representation. To do a further
feature transformation, a dense layer is applied to
the output. The result is concatenated to the output
of the previous described single word approach.

Unlike the single word processing dense layer
and the LSTM, the CNN approach processes all
four BERT features for the words in the same net-
work. When using CNNs for image processing,
the colors of an image are arranged as additional
channels that the CNN can process. For feeding
the CNN with all BERT features for the words,
they are shaped similarly to an image and can be
seen as the channels of the word. By using that
approach, the words are given with four channels
into the CNN. The output of the CNN is then pro-
cessed by a dense layer. The CNN approach can
be seen as an bag of words approach, which takes
the words within a sliding window until the end of
text is reached. The amount of words is fixed, the
approach is build for each of 2-5 words.
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At the end of the processing, the dense- and
LSTM-features and the CNN-features are concate-
nated and given to the classification layer, which
is composed of two dense layers. For more ro-
bust predictions, three graphs are build to get
three predictions, the final result is formed by the
mean. For training the model, the cross-entropy-
loss is used. The model gets optimized with
AdamOptimizer. On every training step, the
model is validated with the provided validation
dataset, and the model weights on the best F1-
score are taken to predict the test examples.

4.3 Subtask B

For subtask B, a similar model as in (Chen and
Cardie, 2018) is built to do cross-domain classi-
fication. The model in this work is composed of
three major parts:

• Label classifier: Model that predicts if an ex-
ample is a suggestion.

• Domain classifier: Model for the prediction
of the domain of an example.

• Shared features: Model that applies a trans-
formation on the input features.

The training of the model can be split into two
phases: The pre-training phase of the supervised
label classifier and the adversarial training of the
domain classifier and the shared features.

In the pre-training phase, the model uses super-
vised training like for subtask A. In this phase, the
label classifier and the shared features are trained
to get the best score on the suggestion data of the
domain of online suggestion forums. The shared
features get the word embeddings as input and ap-
ply a CNN on each BERT embedding. The size of
the CNNs is the same as the length of the embed-
ding, so that the projected word features are of the
same shape as the input features.

In the next step, the projected features are clas-
sified with the label classifier. Unlike to subtask
A, only the CNN part is used for the classification
because of the amount of additional parameters of
the shared features and the domain classifier. The
CNN works like in subtask A and processes the
four BERT features as single channels. In this
task, a sliding window of the word counts from 2-
6 words is taken. The optimization is applied with
AdamOptimizer and stops when the best score
is reached on the validation data of subtask A.

train val test pred
#examples 8500 592 833 833
#suggestions 2085 296 87 133
#non-suggestions 6415 296 746 700

Table 1: Count of the examples for the different
datasets and the prediction on the test set for sub-
task A.

In phase two, the domain classifier starts with
the training and learns to choose the right domain
for the examples. To do that, also examples of
the unlabeled hotel review dataset are given into
the net. The domain classifier has the same struc-
ture as the text classifier and uses CNNs to find the
right label for an example.

After one train step of the domain classifier,
the shared features are retrained in an adversar-
ial way to maximize the loss of the domain classi-
fier. To realize this, the parameters are trained with
the switched labels for the hotel review examples
which are marked as suggestions for this training
step.

After the training step of the domain classifier
and the shared features, the validation examples
of subtask B are used to predict a score. To do
that, the examples are predicted with the text clas-
sifier, which uses the updated shared features to
make a prediction if the example is a suggestion.
Early stopping is used to find the best model with
the validation data, so the model stops at the maxi-
mum F1-score for the validation set for subtask B.

5 Results

In this section, the results for subtask A and B are
discussed. Also the test data, which has been pro-
vided to the participants after the evaluation phase,
is used for the analysis.

5.1 Subtask A
For subtask A, the best model reached a F1-score
of 0.7273 for the test data. This model archived
a validation F1-score of 0.875 which is a notice-
able difference to the test data score. To find the
difference in the datasets, the example counts are
compared in Table 1. It can be seen that there are
differences in the ratio of the data. While the train
data contains about 25% of examples for sugges-
tions, for the test data there are only about 15%.
Since oversampling is used to tackle the problem
of class imbalance, this difference of train and test
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Figure 1: Comparison of the F1-scores for valida-
tion and test set during training for subtask A.

data should not have much influence on the result.
Also the counts of predicted classes for the test
set can be seen in the table, which show a simi-
lar amount like the test classes, but has some more
predictions for the class of suggestions.

Another factor for the gap between validation
and test score could be explained by very differ-
ent examples in the two sets. In addition to that,
the validation set may be better represented by the
train set. That could lead to bad results for the test
data when stopping at a good F1-score for the vali-
dation data. For analyzing this, another train run is
started and the curve for the F1-score for the val-
idation set and the test set plotted. The outcome
can be seen in Figure 1.

It can be seen that the test F1-score is constantly
lower than the validation score. Also there are
much variations in the test score, even in a late
train phase. Overall it can be determined that the
train data describes the validation data better than
the test data with the given model for subtask A.

5.2 Subtask B

The model for subtask B reached a final F1-score
on the test data of 0.8187. In comparison to sub-
task A, it can be seen that the final score on the test
data is higher, although no labeled data is given
for that task except the validation data. The reason
for this could be the use of the external hotel re-
view dataset that inputs many new examples into
the model. The overall count of examples for ho-
tel reviews is much higher than the labeled data
in subtask A, so that the higher score can be ex-
plained with the presence of more data.

val test pred
#examples 808 824 824
#suggestions 404 348 402
#non-suggestions 404 476 422

Table 2: Subtask B dataset and prediction counts.

Also the validation score of 0.884 doesn’t differ
to the test score as much as in subtask A. This also
shows that the use of external data improves the
overall result of the model. The validation data
for subtask B was used to apply early stopping
and saving the weights at the best validation F1-
score. Like for subtask A, the class counts for the
different datasets are shown in Table 2. It can be
seen that the distribution of the classes in the test
and validation set is more equal than in subtask
A, what could be a reason why the model archived
better results. To verify this, another training run is
started to compare the test and validation F1-score
over the training epochs. The results can be seen in
Figure 2. The validation data score for subtask A
and B and the test score for subtask B is plotted for
every training step. Since the training is separated
into two phases, the left graph shows the scores for
the pre-training phase and the right graph for the
adversarial training.

In the pre-training phase of the model, the score
of the validation data of subtask A improves as
expected since supervised training is performed.
Also it can be seen that the subtask B data score
shows a high variance over the epochs, but de-
creases slightly. Over all epochs, the test and vali-
dation score of subtask B is nearly the same what
could be a hint that the difference between the
datasets is very small. This is confirmed in phase
two of the training, where the validation and test
score increase in the first epochs. Although the
validation score reaches a higher peak for the F1-
score, the peak of the test score is found in around
the same region of train steps. The validation score
for subtask A decreases in the adversarial train
phase, what could be caused by a overfitting to the
hotel review domain. Also the validation score of
subtask B decreases after about 50 epochs. The
reason for that could be that the amount of non-
suggestions in very high in the hotel reviews data,
so that the model unlearns to distinguish between
the two classes.
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Figure 2: Two training phases for subtask B: First the pre-training with the subtask A data, then the
adversarial training with the hotel review dataset.

6 Conclusion and Future Work

In this work, for each subtask of SemEval-2019
Task 9 a solution is presented. For subtask A, a su-
pervised model is built on the neural network tech-
niques CNN and LSTM. As input features, BERT
word embeddings are taken, which are pre-trained
on huge datasets. One problem in subtask A is the
class imbalance of the data, which is tackled with
oversampling. Another problem that occurred dur-
ing the evaluation of the training phase is the dif-
ference of examples in the validation and the test
set, what could be one of the reasons why the val-
idation score is much higher than the test score. In
future works, it can be tried to extend the labeled
data with additional unlabeled data to tackle the
problem of class imbalance and too few examples.
Since extending the data works for subtask B, it
could also work for subtask A and the domain of
suggestion forum posts.

Subtask B sets the task to classify sentence as
suggestion or non-suggestion for the domain of
hotel reviews. Unlike to subtask A, only a small
validation set is given as labeled data which is not
allowed to be used for supervised training. To
solve the problem of not having labeled data, the
technique of cross-domain classification has been
used. This is done by building a neural network
model, which is trained in an adversarial way.
Like in subtask A, a classification model for the
suggestions is given. In addition to that, a shared
feature representation and a domain classifier are
added. The domain classifier is trained to assign
the right domain label to a sentence. The shared

feature representation is trained adversarial to the
domain classifier, so that it learns to generate a
global representation for both domains. For that,
an unlabeled external dataset is taken which con-
tains examples for the domain of hotel reviews.

The results for subtask B show that the adver-
sarial training can improve the F1-score for the do-
main with no labeled data. This happens with the
cost of lowering the score for the labeled data, on
which the model was pre-trained. Also the score
for the hotel review data falls down after the peak
is reached. This makes it necessary to have at least
a small dataset which contains labeled data for
subtask B to measure the score during the train-
ing and stop when best score has been reached.
For future work, it could be tried to develop a bet-
ter shared features method where a good feature
representation for both domains is formed. That
would give a classifier that could be used to predict
sentences of both domains. Another improvement
could be archived by developing a model where
the curve for the unlabeled data doesn’t fall down
that sharply in the late train phase. This could lead
to a method were no labeled data is needed to stop
the training at a good point.
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