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Abstract

This paper describes our system submitted to
SemEval 2019 Task 7: RumourEval 2019: De-
termining Rumour Veracity and Support for
Rumours, Subtask A (Gorrell et al., 2019).
The challenge focused on classifying whether
posts from Twitter and Reddit support, deny,
query, or comment a hidden rumour, truthful-
ness of which is the topic of an underlying dis-
cussion thread. We formulate the problem as a
stance classification, determining the rumour
stance of a post with respect to the previous
thread post and the source thread post. The re-
cent BERT architecture was employed to build
an end-to-end system which has reached the
F1 score of 61.67 % on the provided test data.
Without any hand-crafted feature, the system
finished at the 2nd place in the competition,
only 0.2 % behind the winner.

1 Introduction

Fighting false rumours at the internet is a tedious
task. Sometimes, even understanding what an ac-
tual rumour is about may prove challenging. And
only then one can actually judge its veracity with
an appropriate evidence. The works of Ferreira
and Vlachos (2016) and Enayet and El-Beltagy
(2017) focused on predictions of rumour veracity
in thread discussions. These works indicated that
the veracity is correlated with discussion partici-
pants’ stances towards the rumour. Following this,
the SubTask A SemEval-2019 Task 7 consisted in
classifying whether the stance of each post in a
given Twitter or Reddit thread supports, denies,
queries or comments a hidden rumour.

Potential applications of such a function are
wide, ranging from an analysis of popular events
(political discussions, academy awards, etc.) to
quickly disproving fake news during disasters.

Stance classification (SC), in its traditional
form, is concerned with determining the attitude

of a source text towards a target text (Mohammad
et al., 2016). It has been studied thoroughly for
discussion threads (Walker et al., 2012; Hasan and
Ng, 2013; Chuang and Hsieh, 2015). However, the
objective of SubTask A SemEval-2019 Task 7 is to
determine the stance to a hidden rumour which is
not explicitly given (it can be often inferred from
the source post of the discussion – the root of the
tree-shaped discussion thread – as demonstrated in
Figure 1). The competitors were asked to classify
the stance of the source post itself too.

.@AP I demand you retract the lie that  
people in #Ferguson were shouting "kill the police",  
local reporting has refuted your ugly racism
Figure 1: An example of discussion’s source post
denying the actual rumour which is present in the
source post – annotated with red cursive

The provided dataset was collected from Twitter
and Reddit tree-shaped discussions. Stance labels
were obtained via crowdsourcing. The discussions
deal with 9 recently popular topics – Sydney siege,
Germanwings crash etc.

The approach followed in our work builds
on recent advances in language representation
models. We fine-tune a pre-trained end-to-
end BERT (Bidirectional Encoder Representations
from Transformers) model (Devlin et al., 2018),
while using discussion’s source post, target’s pre-
vious post and the target post itself as inputs to de-
termine the rumour stance of the target post. Our
implementation is available online.1

2 Related Work

Previous SemEval competitions: In recent years,
there were two SemEval competitions targeting
the stance classification. The first one focused on
the setting in which the actual rumour was pro-
vided (Mohammad et al., 2016). Organizers of

1www.github.com/MFajcik/RumourEval2019

www.github.com/MFajcik/RumourEval2019
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SemEval-2016 Task 6 prepared a benchmarking
system based on SVM using hand-made features
and word embeddings from their previous system
for sentiment analysis (Mohammad et al., 2013),
outperforming all the challenge participants.

The second competition was the previous Ru-
mourEval won by a system based on word vectors,
handcrafted features2 and an LSTM (Hochreiter
and Schmidhuber, 1997) summarizing informa-
tion of the discussion’s branches (Kochkina et al.,
2017). Other submissions were either based on
similar handcrafted features (Singh et al., 2017;
Wang et al., 2017; Enayet and El-Beltagy, 2017),
features based on sets of words for determining
language cues such as Belief or Denial (Bahuleyan
and Vechtomova, 2017), post-processing via rule-
based heuristics after the feature-based classifica-
tion (Srivastava et al., 2017), Convolutional Neu-
ral Networks (CNNs) with rules (Lozano et al.,
2017), or CNNs that jointly learnt word embed-
dings (Chen et al., 2017).

End-to-end approaches: Augenstein et al.
(2016) encode the target text by means of a bidi-
rectional LSTM (BiLSTM), conditioned on the
source text. The paper empirically shows that
the conditioning on the source text really matters.
Du et al. (2017) propose target augmented embed-
dings – embeddings concatenated with an average
of source text embeddings – and apply them to
compute an attention based on the weighted sum
of target embeddings, previously transformed via
a BiLSTM. Mohtarami et al. (2018) propose an
architecture that encodes the source and the tar-
get text via an LSTM and a CNN separately and
then uses a memory network together with a simi-
larity matrix to capture the similarity between the
source and the target text, and infers a fixed-size
vector suitable for the stance prediction.

3 BUT-FIT’s System Description

3.1 Pre-processing

We replace URLs and mentions with special
tokens $URL$ and $mention$ using tweet-
processor3. We use spaCy4 to split each post into

2The features included: a flag indicating whether a tweet
is a source tweet of a conversation, the length of the tweet, an
indicator of the presence of URLs and images, punctuation,
the cosine distance to the source tweet and all other tweets in
the conversation, the count of negation and swear words, and
an average of word vectors corresponding to the tweet.

3https://github.com/s/preprocessor
4https://spacy.io/

S D Q C Total
train 925 378 395 3519 5217
in % 18 7 8 67
dev 102 82 120 1181 1485
in % 7 6 8 80
test 157 101 93 1476 1827
in % 9 6 5 81

Table 1: Distribution of examples across classes
in the training/development/test data set. The ex-
amples belong to 327/38/81 training/development/test
tree-structured discussions.

sentences and add the [EOS] token to indicate ter-
mination of each sentence. We employ the tok-
enizer that comes with the Hugging Face PyTorch
re-implementation of BERT5. The tokenizer low-
ercases the input and applies the WordPiece en-
coding (Wu et al., 2016) to split input words into
most frequent n-grams present in the pre-training
corpus, effectively representing text at the sub-
word level while keeping a 30,000-token vocab-
ulary only.

3.2 Model

Following the recent trend in transfer learning
from language models (LM), we employ the pre-
trained BERT model. The model is first trained on
the concatenation of BooksCorpus (800M words)
(Zhu et al., 2015) and English Wikipedia (2,500M
words) using the multi-task objective consisting
of LM and machine comprehension (MC) sub-
objectives. The LM objective aims at predict-
ing the identity of 15% randomly masked to-
kens present in the input6. Given two sentences
from the corpus, the MC objective is to clas-
sify whether the second sentence follows the first
sentence in the corpus. The sentence is re-
placed randomly in half of the cases. During
pre-training, the input consists of two documents,
each represented by a sequence of tokens divided
by the special [SEP ] token and preceded by the
[CLS] token used by the MC objective, i. e.,
[CLS]document1[SEP ]document2[SEP ]. In-
put tokens are represented by jointly learned token
embeddings Et, segment embeddings Es, captur-
ing whether the word belongs into document1 or
document2, and positional embeddings Ep.

5https://github.com/huggingface/
pytorch-pretrained-BERT

6The explanation of token masking is simplified; details
can be found in the original paper (Devlin et al., 2018).

https://github.com/s/preprocessor
https://spacy.io/
https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT
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[CLS] oh sweet and whole ##some red ##dit , is it true us citizens have to pay to use us dollar bills as currency ? [ e ##os ]  
to use a dollar bill - no . . . . behind the scene taxes / fees - of course ! [ e ##os ] cu ##z . . . ' mu ##rica [ e ##os ] [SEP]  

no , like we are tax ##ed as a country to use the usd [ e ##os ] [SEP]

Encoded Input

Transformer Encoder N times

Dense/Tanh

Dense/Softmax

Token embeddings Positional embeddings Segment embeddings+ +

Pre-trained parameters[CLS]-token level output

Figure 2: An architecture of BUT-FIT’s system. The text segment containing document1 is green, the segment
containing document2 (the target post) is blue. The input representation is obtained by summing input embedding
matrices E = Et + Es + Ep ∈ RL×d, L being the input length and d the input dimensionality. The input is
passed N times via the transformer encoder. Finally, the [CLS] token-level output is fed through two dense layers
yielding the class prediction.

Our system follows the assumption that the
stance of discussion’s post depends only on it-
self, on the source thread post and on the previous
thread post. Since the original input is composed
of two documents, we experimented with various
ways of encoding the input (see Section 5), ending
up with just a concatenation of the source and the
previous post as document1 (left empty in case of
the source post being the target post) and the tar-
get post as document2. The discriminative fine-
tuning of BERT is done using the [CLS] token
level output and passing it through two dense lay-
ers yielding posterior probabilities as depicted in
Figure 2. A weighted cross-entropy loss is used to
ensure a flat prior over the classes.

3.3 Ensembling

Before submission, we trained 100 models differ-
ing just by their learning rates. We experimented
with 4 different fusion mechanisms in order to in-
crease the F1 measure and compensate for overfit-
ting:
The TOP-N fusion chooses 1 model randomly and
adds it to the ensemble. Then, it randomly shuffles
the rest of the models and tries to add them into the
ensemble one at the time, while iteratively calcu-
lating ensemble’s F1 by averaging the output prob-
abilities, effectively approximating the Bayesian
model averaging. If a model increases the total
F1 score, the model is permanently added to the
ensemble. The process is repeated until no further
model improving the ensemble’s F1 score can be
found. This procedure resulted in a set of 17 best

models.
The EXC-N fusion chooses all models into the en-
semble and then iteratively drops one model at the
time, starting from that which dropping results in
the largest increase of the ensemble’s F1. The pro-
cess stops when dropping any other model cannot
increase the F1 score. Using this approach, we
ended up using 94 models.
The TOP-Ns is analogous to the TOP-N fusion,
but we average pre-softmax scores instead of out-
put class probabilities.
The OPT-F1 fusion aims at learning weights sum-
ming up to 1 for the weighted average of output
probabilities from models selected via the proce-
dure used in the TOP-N strategy. The weights are
estimated using modified Powell’s method from
the SciPy package to maximize the F1 score on
the development dataset.

4 Experimental Setup

We implemented our models in PyTorch, taking
advantage of the Hugging Face re-implementation
(see Footnote 5), with the ”BERT-large-uncased”
setting, pre-trained using 24 transformer layers,
having the hidden unit size of d = 1024, 16 atten-
tion heads, and 335M parameters. When building
the ensemble, we picked learning rates from the
interval [1e−6, 2e−6]. Each epoch iterates over
the dataset in an ordered manner, starting by the
shortest sequence. We truncate sequences at max-
imum length l = 200 with a heuristic – firstly we
truncate the document1 to length l/2, if that is
not enough, then we truncate the document2 to



1100

#Θ Acctest macro F1dev macro F1test F1S F1Q F1D F1C
Branch-LSTM 453K 84.10 - 49.30 43.80 55.00 7.10 91.30
FeaturesNN 205K 82.84 45.46± 1e−2 44.55± 2e−2 40.29 40.12 17.69 80.43
BiLSTM+SelfAtt 28M 83.59 47.55± 6e−3 46.81± 6e−3 42.21 45.20 17.75 81.92
BERTbase 109M 84.67 51.40± 1e−2 53.39± 3e−2 43.49 59.88 18.42 90.36
BERTbig−noprev 335M 84.33 52.61± 2e−2 52.91± 4e−2 42.37 55.17 24.44 90.15
BERTbig−nosrc 335M 84.51 53.72± 2e−2 55.13± 3e−3 43.02 56.93 26.53 90.51
BERTbig 335M 84.08 56.24± 9e−3 56.70± 3e−2 44.29 57.07 35.02 90.41
BERTbig EXC-N

∗ - 85.50 58.63 60.28 48.89 62.80 37.50 91.94
BERTbig TOP-N

∗ - 85.22 62.58 60.67 48.25 62.86 39.74 91.83
BERTbig OPT-F1 - 85.39 62.68 61.27 48.03 62.26 42.77 92.01
BERTbig TOP-Ns - 85.50 61.73 61.67 49.11 64.45 41.29 91.84

Table 2: Overview of the results. The values for each single model were obtained by averaging results of 11 mod-
els. We report the mean and the standard deviation in these cases. #Θ denotes the number of parameters. Columns
F1S to F1C report individual F1 scores for each class. All ensemble models have the F1 score optimized on
the development dataset. BiLSTM+SelfAtt contains 4.2M parameters, without pre-trained BERT embeddings.
BERTbig−nosrc and BERTbig−noprev denote system instantiations with an empty source and an empty target post,
respectively. Note that the accuracy is biased towards different training data priors as shown in Table 1. SemEval
submissions are denoted by ∗.

the same size. We keep the batch size of 32 ex-
amples and keep other hyperparameters the same
as in the BERT paper. We use the same Adam op-
timizer with the L2 weight decay of 0.01 and no
warmup. We trained the model on the GeForce
RTX 2080 Ti GPU.

5 Results and Discussion

We compare the developed system to three base-
lines. The first one is the branch-LSTM base-
line provided by the task organizers7 – inspired
by the winning system of RumourEval 2017.
The second baseline (FeaturesNN) is our re-
implementation of the first baseline in PyTorch
without the LSTM – posts are classified by means
of a 2-layer network (ReLU/Softmax), using only
the features defined in Footnote 2. In the third
case (BiLSTM+SelfAtt), we use the same in-
put representation as in our submitted model but
replace the BERT by an 1-layer BiLSTM network
followed by a self-attention and a softmax layer,
inspired by Lin et al. (2017).

The results are shown in Table 2. BERT mod-
els had to cope with a high variance during the
training. This might be caused by the problem dif-
ficulty, the relatively small number of training ex-
amples, or the complexity of the models. To deal
with the problem, we decided to discard all models
with F1 scores of less than 55 on the development
dataset and we averaged the output class probabil-

7http://tinyurl.com/y4p5ygn7

ity distributions when ensembling. Our initial ex-
periments used sequences up to the length of 512,
but we found no difference when truncating them
down to 200.

What features were not helpful: We tried
adding a number of other features, including those
indicating positive, neutral, or negative sentiment,
and all the features used by the FeaturesNN
baseline. We also tried adding jointly learned
POS, NER, and dependency tag embeddings, as
well as the third segment embeddings8. We also
experimented with an explicit [SEP ] token to sep-
arate the source and the previous post in the BERT
input. However, none of the mentioned changes
led to a statistically significant improvement.

6 Conclusions and Future Directions

The system presented in this paper achieved the
macro F1 score of 61.67, improving the baseline
by 12.37%, while using only the source post of
discussion, the previous post and the target post to
classify the target post’s stance to a rumour.

A detailed analysis of the provided data shows
that the employed information sources are not suf-
ficient to correctly classify some examples. Our
future work will focus on extending the system by
a relevance scoring component. To preserve the
context, it will evaluate all posts in a given dis-
cussion thread and pick up the most relevant ones
according to defined criteria.

8We tried adding the learned representations to the input
the same way the segment/positional embeddings are added.

http://tinyurl.com/y4p5ygn7
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A Supplemental Material

A.1 Dataset Insights

The dataset contains a whole tree structure and
metadata for each discussion from Twitter and
Reddit. The nature of the data differs across the
sources (for example, the Reddit subset includes
upvotes).

When analysing the data, we spotted several
anomalies:

• 12 data points do not contain any text. Ac-
cording to the task organizers, they were
deleted by users at the time of data download
and been left in the data not to break the con-
versational structure.

• The query stance of some examples taken
from subreddit DebunkThis9 is dependent on
the domain knowledge. The class of some
examples is ambiguous; they should be prob-
ably labelled by multiple classes.

A.1.1 Domain knowledge dependency

Examples from subreddit DebunkThis have all
the same format ”Debunk this: [statement]”, e.g.
”Debunk this: Nicotine isn’t really bad for you,
and it’s the other substances that makes tobacco
so harmful.”. All these examples are labelled as
queries.

9https://www.reddit.com/r/DebunkThis/

A.1.2 Class ambiguity
The source/previous post ”This is crazy!
#CapeTown #capestorm #weatherforecast
https://t.co/3bcKOKrCJB” and the target post
”@RyGuySA Oh my gosh! Is that not a tornado?!
Cause wow, It almost looks like one!”, labelled
as a comment in the dataset, might be seen as a
query as well.

A.2 Additional Introspection
Figures 3, 4, 5, and 6 demonstrate attention ma-
trices A, derived from the multi-head attention de-
fined as:

A =
QK>√

dk
, (1)

where Q,K ∈ RL×dk are the matrices containing
query/value vectors and dk is the key/value dimen-
sion. The insights are selected from the heads at
the first layer of the transformer encoder.



1103

Figure 3: Intra-segment attention – the attention is made only between the subword units from the same segment.

Figure 4: Attention matrix capturing the subword similarity.
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Figure 5: ’Soft’ local context aggregation.

Figure 6: ’Hard’ local context aggregation – the signal is mostly sent further to another transformer encoder layer.


