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Abstract

Researchers have been paying increasing at-
tention to rumour evaluation due to the rapid
spread of unsubstantiated rumours on social
media platforms, including SemEval 2019 task
7. However, labelled data for learning ru-
mour veracity is scarce, and labels in rumour
stance data are highly disproportionate, mak-
ing it challenging for a model to perform
supervised-learning adequately. We propose
an inference chain-based system, which fully
utilizes conversation structure-based knowl-
edge in the limited data and expand the train-
ing data in minority categories to alleviate
class imbalance. Our approach obtains 12.6%
improvement upon the baseline system for
subtask A, ranks 1st among 21 systems in sub-
task A, and ranks 4th among 12 systems in
subtask B.

1 Introduction

With the universality of the Internet, social media
has become the main channel for acquiring and ex-
changing information. However, the free flow of
information has given rise to the prevalence of ru-
mours, among which fake ones are harmful since
they are generally convincing and hard to distin-
guish. To address this problem, we need automatic
rumour veracity classification on social media. A
large amount of rumour stance instances on social
media have been employed to assist the model in
making better predictions regards the rumour’s ve-
racity.

Rumour stance classification and rumour ve-
racity classification are two subtasks of SemEval
2017 Task 8 (Derczynski et al., 2017) and Se-
mEval 2019 Task 7 (Gorrell et al., 2018). Sub-
task A predicts the stance of a post replying to a
rumourous post, in terms of supporting, denying,
querying and commenting the rumour. Subtask B
anticipates the veracity of a rumour as true or false

given the rumourous post and a set of additional
resources.

Apart from variations in models, research in this
area mainly focuses on the special characteristics
of data coming from social media: conversation
structure, rich intrinsic features, skewed distribu-
tion toward the comment class in rumour stance
data and scarcity of available data for rumour ve-
racity classification. While most pioneering works
treated rumour evaluation as a single-tweet task,
attempts to utilize the conversation structure in-
cluded pairing source and replies together to make
up input (Singh et al., 2017), and adopting the
full conversation thread as input in the time se-
quence (Kochkina et al., 2017). With the real-
ization of rich features hidden in tweet contexts,
Qazvinian et al. (2011) was one of the first who
extracted them and combined them with model in-
put. The feature sets were augmented during the
following work. In trying to acquire more com-
prehensive information, not only features of the
tweet for prediction were taken into considera-
tion, but also features from its conversation con-
text (Enayet and El-Beltagy, 2017). To address
the class imbalance problem, Wang et al. (2017)
transformed subtask A into a two-step classifica-
tion task: they first classified comments and non-
comments, and then categorized non-comments
into the other three classes. Finally, in order to
make up for the absence of abundant accessible
training data in the rumour veracity classification
task, external resources usage such as Wikipedia
dumps and news articles was encouraged in both
RumourEval contests.

In our work, we find that simply taking the
whole conversation as input is inadequate. We
have to recognize the role each part assumes in
the conversation thread and mark them accord-
ingly in the input. Instead of filtering features
solely based on the system performance, we pre-
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fer to run a feature selection before adding to the
system and choose those that can bring a high de-
viation degree between data categories. Follow-
ing the feature extraction work of Enayet and El-
Beltagy (2017), we consider introducing more fea-
tures from the conversation context to further as-
sist model judgment. We alleviate class imbalance
in stance classification by expanding training data
in the under-represented classes with pre-screened
external data from similar datasets. At last, we
approach the data insufficiency issue by setting
an average length limit and cutting the overlength
ones to enlarge training data.

We propose an inference chain-based system
for this paper. A conversation thread starts with
a source tweet, and follows by replies, in which
each one responds to an earlier one in time se-
quence. When we infer the stance of one tweet,
the source or earlier replies in the same thread can
give abundant additional hints. Therefore, we take
each conversation thread as an inference chain and
concentrate on utilizing it to solve the data issues
discussed earlier.

Our approach for both tasks is fine-tuned
on Generative Pre-trained Transformer (OpenAI
GPT) (Radford et al., 2018), a model that has per-
formed well in 9 NLP tasks. Our work primar-
ily focuses on subtask A rumour stance classifica-
tion, in which we expand training data from simi-
lar datasets, extract features and join separate parts
to form input according to their roles in inference
chain. For subtask B rumour veracity classifica-
tion, we apply similar feature extraction and in-
put concatenation process, except for replacing the
data expansion step with data slicing. With the
above implementation, our model outperforms all
other systems in subtask A and places 4th in sub-
task B in SemEval 2019.

2 System Description

We propose a system that focuses on inference
chain-based knowledge enhancement. The oper-
ations involved are displayed in Figure 1. We
first perform data preprocessing on the raw dataset
(Section 2.1) to fetch tweet content and facilitate
the subsequent feature extraction step. Then we
implement two data extension mechanisms on the
training data: to relieve class imbalance toward
one category in subtask A, we expand training
data with external datasets (Section 2.2); to alle-
viate data sparsity and try to avoid under-fitting

Figure 1: The operational flowchart for our system.

on the training set in subtask B, we set a length
limit for each part of the input and split data in-
stances accordingly (Section 2.3) to enlarge the
amount of data. In trying to better utilize inference
chain-based features, we extract word-level and
tweet-level features and filter them for each sub-
task (Section 2.4). Finally, we concatenate each
part in the inference chain with its features to-
gether (Section 2.5) and feed them in the model.
After model classification, we adjust some of the
results(Section 2.6) according to the organizers’
requirements.

An illustration of our system is shown in Fig-
ure 2. How our base model GPT performs on the
two classification tasks is depicted in the upper left
corner. The right side presents how we organize
our input for subtask A and B. In the lower left
corner, we give an example of an inference chain
(conversation thread) in the training data. To help
understand, we define each part of it for the rest
of this passage. For subtask A, we divide an in-
ference chain into four parts: source tweet, other
tweets, parent tweet and target tweet. For subtask
B, an inference chain constitutes of a source tweet
and a thread content. To better clarify, a thread
content is defined as a whole inference chain ex-
cluding the source tweet, and we also define a
whole inference chain excluding the target tweet
as a conversation context. As depicted in the up-
per left corner, the goal is to predict the stance of
a target tweet toward a rumour for subtask A, and
the veracity of a rumour(usually contained in the
source tweet) for subtask B.

2.1 Data Preprocessing

After extracting the tweet content out of the orig-
inal data, we first perform word tokenization with
Stanford CoreNLP1, Spacy2 and NLTK tools3,
among which the result of Stanford CoreNLP

1https://stanfordnlp.github.io/CoreNLP/
2https://spacy.io/
3http://www.nltk.org/
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Figure 2: An overview of our system. The upper left corner is a diagram of how our base model GPT performs on
the two classification tasks. The upper right corner is how we organize our input for subtask A and B. The lower
left corner is a data example which helps explain “inference chain”, “source tweet”, “other tweets”, “parent tweet”,
“target tweet”, “thread content” and “conversation context” in the input. The lower right corner is the features we
combined in the input.

proves to be the best. Then we fix some tokeniza-
tion inaccuracies in the result. Blanks, emoticons
and uncommon punctuations are removed to re-
duce the amount of Out of Vocabulary (OOV). Be-
sides, we transform all user mentions into “@”
and all URLs into “urlurlurl” in order to increase
the repetition rate of these features and allow the
model to learn them better. Finally, we convert all
letters into their lower case for the same purpose.

2.2 Traning Data Expansion

We find that the data distribution in the training set
is skewed toward comment in subtask A, which
explains why it is hard for the model to reach
high precision and recall scores in the other three
classes. Thus we expand the training data with
datasets on similar tasks with labels corresponding
to the three minority classes in seeking for better
class balance and more sufficient training.

For support and deny, we take each claim as
both the target tweet and its conversation con-
text in stance classification datasets SemEval 2016
task 6 dataset (Mohammad et al., 2016), Emer-
gent (Ferreira and Vlachos, 2016), and twitter sen-
timent analysis dataset sentiment140 (Go et al.,
2009). For query, we use passages as the conversa-

Training Set
Class Origin Extended Sum
support 925(18%) 797 1722(23%)
deny 378(7%) 696 1074(14%)
query 395(8%) 912 1307(17%)
comment 3519(67%) 0 3519(46%)

Table 1: Distribution of tweets between classes before
and after data expansion in the training set for subtask
A.

tion context, unanswerable questions as the target
tweet in reading comprehension datasets SQuAD
2.0 (Rajpurkar et al., 2018) and CoQA (Reddy
et al., 2018).

The acquirement of extended data takes two
steps. We first calculate the sentence similarity of
each data piece in external datasets with all sen-
tences in the original dataset in terms of Leven-
shtein Distance, and only keep instances whose
minimal distances with the original dataset are be-
low 0.7. Then we test them in a model trained
with the original dataset. If the model predic-
tion is identical to the label we expect, we append
this instance in our training set for subtask A. The
data distribution before and after data expansion is
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shown in Table 1.

2.3 Traning Data Slicing
The training set for subtask B only has 327 pieces.
Since the organizers define subtask B as a binary
classification task, which classifies instances into
two categories: true and false, and takes pieces
whose confidence scores below 0.5 as unverified,
the unverified class in the training set is entirely
useless, which takes up 98 pieces. Discard of this
class only makes the data scarcity problem worse
and may lead to under-fitting on the training set.

We try to extend the training set from a differ-
ent angle. We look at the distribution of sequence
length and set a length restriction for each conver-
sation context to 70 tokens and each target tweet
to 28 tokens. For those that exceed the limit in
the training set, we truncate each piece to the edge
to create multiple instances and thus enlarge the
training set. For the development set and test set,
the length restrictions are also set, but only the first
truncated piece for each instance is taken as in-
put. Although data slicing may hurt long-distance
dependency, the experiment result shows that this
method performs better than the original.

2.4 Feature Extraction
Inspired by the features extracted by Kochkina
et al. (2017) and Bahuleyan and Vechtomova
(2017), we collect 56 word-level features and 16
tweet-level features. For word-level features, we
calculate their distribution percentage on the four
categories in subtask A and the three categories in
subtask B in the training and development set, and
only apply those that mark a clear distinction be-
tween the classes for each subtask. For the numer-
ical tweet-level features, we cluster each one into
several groups according to their values and deter-
mine a common value for the whole group. Where
to add the features is illustrated on the right side in
Figure 2.

After selection, the word-level features we ap-
ply to subtask A and B are as below:
Subtask A: Whether the tweet content has ques-
tion marks, hashtags, URLs, “RT”(refers to
retweet), positive words, negative words, swear-
words, query words, forbidding verbs, accusing
verbs, complaining verbs, warning verbs, permit-
ting verbs, praising verbs, etc.
Subtask B: Whether the tweet content has ex-
clamation marks, positive words, negative words,
query words, false synonyms, false antonyms,

declaring verbs, confirming verbs, arguing verbs,
etc.

The tweet-level features we add for subtask A
are as below:
Features for both Twitter and Reddit: Tweet
favourite count, tweet depth in the thread and
whether the user has user description.
Twitter-specific features: User-related features
include whether the user is verified, user-related
URLs, whether the user uses the default profile,
user followers count, user friends count, user listed
groups count, and user statuses count. Tweet-
related features include tweet retweet count.
Reddit-specific features: Whether the tweet has
self-text, tweet kind, whether the tweet is archived,
whether the tweet is edited, whether the user is a
submitter.

We’ve tried to add the above tweet-level fea-
tures to input for subtask B, but unfortunately ob-
serve no performance improvement in our experi-
ment, so the official submission for subtask B in-
volves no tweet-level features.

As indicated in Enayet and El-Beltagy (2017),
whether the users of the source and parent tweet
are verified are useful in performance improve-
ment for subtask A. So we speculate that word-
level features and other tweet-level features may
also be necessary hints for model prediction. We
find that the model always creates mispredictions
because the stance of the target tweet toward the
rumour is indirect. Since many tweets express di-
rect stances toward their parent tweets, we can in-
fer their stances toward the rumour with the help of
their parent. In addition, the model often mistakes
the stance of target tweet toward source tweet as its
stance toward the rumour. But in cases where the
source tweet expresses deny towards the rumour,
the two stances above are not consistent. There-
fore, parent tweet and source tweet assume sig-
nificant roles in an inference chain and we need to
acquire more knowledge from them to improve the
prediction accuracy of the target tweet. So we ap-
ply all filtered word-level and tweet-level features
for the source, the parent and the target to the input
for subtask A.

2.5 Input Concatenation

As described above, the model is likely to make
correct predictions when it learns information
from earlier tweets in the inference chain. We plan
to concatenate the contexts in the inference chain
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with the target tweet to make up for input. The in-
put concatenation method is depicted in the upper
right corner of Figure 2. We concatenate source
tweet with thread content to form an input struc-
ture for subtask B. We apply two methods in sub-
task A. At first we concatenate the conversation
context and the target tweet with the same struc-
ture as subtask B. However, this method often re-
sults in the model’s confusion between the stance
of the target tweet toward the source and the par-
ent. Thus, we decide to mark the position of the
source and the parent in the conversation thread
with delimiters and connect them with the rest of
the conversation (other tweets) together. Each part
is marked by delimiters and features are inserted
behind them in the input.

2.6 Model

We employ OpenAI GPT that has been pretrained
on BooksCorpus (Zhu et al., 2015) as our base
model for task-specific fine-tuning. We’ve tried
different activation functions, optimizers and hy-
perparameters but observe no performance im-
provement. So we use the default model config-
uration for the official submission. GPT requires
its input length to be less than 512 tokens. For in-
puts that exceed this limit, we choose to cut off the
“other tweets” sequence to fit this restriction.

Result Postprocessing As required by the or-
ganizers, we transform the labels of all blank in-
stances into comment for subtask A, and take
pieces whose confidence levels are below 0.5 as
unverified in subtask B in the model prediction re-
sults.

3 Evaluation

We conduct experiments on data expansion, input
format adjustment and word & tweet-level feature
adding for subtask A, and perform data slicing and
feature adding for subtask B. The dataset we used
for this task is obtained from Zubiaga et al. (2016).
We primarily focus on achieving a higher macro f1
score for both subtasks. We also display the com-
parison of the results on the test set between our
official system and the baseline systems provided
by the organizer.

3.1 Experiment Results

The following are the steps we conduct experi-
ments toward creating the system for official sub-
mission.

Subtask A Our experiments conduct on the
development set for subtask A is shown in Ta-
ble 2. With the first input format (A), we achieve
an initial result of 53.48%. Combining word-
level, tweet-level features (B), and processing data
expansion (C) brings an increase of 0.99% and
1.61% respectively. After converting to the second
input format (D), we’ve seen a rise of 2.03% com-
pared to A. Training data expansion (E) is also im-
plemented on this input, but a decrease of 0.86%
is observed. We suspect that after enhancing the
percentage of the source and parent tweet in new
input, data dissimilarity brought by the external
dataset is aggravated. However, this inferior posi-
tion is reversed by employing features. Word-level
features (F) alone bring a 2.04% growth. Though
tweet-level features alone haven’t led in any ex-
tra increase, adding them together with word-level
features (G) produces a result above 56%. Our fi-
nal result for subtask A is ensembled on three runs
(F1, F2, G) that achieve the best performance on
the development set.

Subtask A
Systems MacroF

A. GPT(1st input) 0.5348
B. GPT(1st input)+WF+TF 0.5447
C. GPT(1st input)+DE 0.5509
D. GPT(2nd input) 0.5551
E. GPT(2nd input)+DE 0.5465
F1. GPT(2nd input)+DE+WF 0.5644
F2. (another run) 0.5669
G. GPT(2nd input)+DE+WF+TF 0.5631

Table 2: Ablation results on the development set for
subtask A. MacroF means macro f1 score. 1st input
consists of conversation context and target tweet, while
a 2nd input constitutes of source tweet, other tweets,
parent tweet and target tweet. WF and TF refer to
word-level and tweet-level features respectively. DE
represents data expansion.

Subtask B Our experiments conducted on the
development set for subtask B is shown in Table 3.
Word features bring an increase of 3.71%. Tweet
features prove to be disruptive and lead to a drop
of up to 11.6%. So we discard this type of feature
in subtask B entirely. The result we’ve submitted
for subtask B is ensembled on two runs (B) that
get the highest values on the development set.

Final Result Our final result on the test set
and the comparison with the baseline systems are
shown in Table 4. BranchLSTM and NileTMRG
are two baselines implemented by the organizers.
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Subtask B
Systems MacroF

A. GPT+DS 0.4701
B. GPT+DS+WF 0.5072
C. GPT+DS+WF+TF 0.4143

Table 3: Ablation results on the development set for
subtask B. DS refers to training data slicing. WF and
TF are the same meaning as Table 2.

Our system is 12.6% higher than the baseline sys-
tem in macro f1 for subtask A, but 8.3% and 5.6%
lower in macro f1 for subtask B compared with
BranchLSTM and NileTMRG respectively. Our
system ranks first in subtask A and fourth in sub-
task B.

Official Submission
Subtask A Subtask B

System MacroF MacroF RMSE
BranchLSTM 0.493 0.336 0.781
NileTMRG 0.309 0.769
Our System 0.6187 0.2525 0.8179

Table 4: Official submission results on the test set for
our system and the organizers’ baselines.

3.2 Error Analysis
We perform error analysis for the results on the
test set. Classification reports for both subtasks
are provided in Table 5. The problem for subtask
A lies in that the model often confused the com-
ment class with the other three classes. The pos-
sible reason can be the relatively larger proportion
of comment data. None of the classes performs
well in prediction for subtask B, though results are
better for the true class comparing with the other
two classes. Precision, recall and macro f1 scores
go extremely low for the unverified class. A rea-
sonable explanation may be the unverified class is
not directly acquired from the model but comes
from the other two classes.

3.3 Comparison with ESIM
Since rumour evaluation can be seen as a task that
given a target tweet and its background conversa-
tion, infer the target label of this tweet, they can
be treated as a subtask of natural language infer-
ence, so we employ ESIM (Chen et al., 2016) in
this task.

The results are shown in Table 6. The input for-
mat is the same as subtask B in GPT. We also try
to apply features and change word embeddings in
ESIM. But no results reach the result in GPT with

Subtask A
prec. rec. f1 distribution

support 0.89 0.93 0.91 1476
deny 0.45 0.51 0.48 101
query 0.62 0.59 0.60 93

comment 0.66 0.38 0.48 157
Subtask B

prec. rec. f1 distribution
true 0.46 0.47 0.47 40
false 0.22 0.13 0.16 31

unverified 0.09 0.20 0.13 10

Table 5: Classification report on the test set for both
subtasks.

an equivalent configuration. So the base model we
employ for the system is GPT instead of ESIM.

Subtask A
Systems MacroF

A. ESIM(glove) 0.434
B. ESIM(glove)+WF+TF 0.452
C. ESIM(google news)+WF+TF 0.466

Subtask B
Systems MacroF

A. ESIM(glove) 0.473

Table 6: ESIM results on the development set for both
subtasks.

4 Conclusions

We introduce a framework with a strong focus
on inference chain-based knowledge enhancement
for determining rumour stance and veracity in Se-
mEval 2019 task 7. In order to address the prob-
lems of class imbalance, training data scarcity,
model’s insufficient learning of features and tree-
structured conversations, we employ data expan-
sion, data slicing, feature extraction, and input
concatenation mechanisms in our system respec-
tively. Our system takes first place in subtask A
and fourth place in subtask B.

In future, we would like to introduce synonyms,
tweet similarity and sentiment features in our
model to further facilitate the recognition of re-
lations between tweets. We will also utilize the
prediction results from stance classification, ex-
pand training data with external datasets and intro-
duce additional knowledge base such as Wikipedia
to assist the model prediction in rumour veracity
classification.
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