
Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1037–1040
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

1037

Team Peter-Parker at SemEval-2019 Task 4: BERT-Based Method in
Hyperpartisan News Detection

Zhiyuan Ning, Yuanzhen Lin, Ruichao Zhong
Department of Computer Science and Technology

Beijing Normal University - Hong Kong Baptist University United International College
Zhuhai, P.R.China

{chineseperson5, jeremy0077jj, answer980810}@gmail.com

Abstract

This paper describes the team peter-parker’s
participation in Hyperpartisan News Detection
task (SemEval-2019 Task 4), which requires to
classify whether a given news article is bias or
not. We decided to use JAVA to do the arti-
cle parser and the BERT model to do the bias
analysis and prediction. Furthermore, we will
show experiment results with analysis.

1 Introduction

As the Hyperpartisan News Detection is getting
more and more popular in NLP area in recen-
t years, our team decided to focus on such kind
of topic and choose task 4 in 2019 SemEval com-
petition, which requires to decide whether a given
news article is showing an unreasoning or blind al-
legiance to some specific groups or persons(Kiesel
et al., 2019). For the task, it also requires the com-
petitor’s model to classify the news article in one
of the two classes, bias or not. In previous Se-
mEval competition, the classification tasks were
mostly regarded as sentiment analysis on Twitter,
news or scientific paper and so on. For SemEval
2019, the task focus on bias detection, which gives
great help for people in daily life to acquire the
news and articles in a more objective way.

So far, the machine learning approaches to
do the bias detection were mostly using the
RNN(Iyyer et al., 2014) or the Word Vec-
tors(Anil Patankar and Bose, 2017), which can get
the accuracy for more than 70%.

To reach a greater performance, we decided
to adopt a state-of-the-art language model, BERT
(Devlin et al., 2018), which set new records on
many NLP tasks recently, into our political bias
task analysis.

For dealing with the given large dataset, JAVA
was used as a parser tool to help us make those
training articles more readable.

2 Model Description

Our task is to predict whether an article or news
is bias or not, which is entirely a binary classifi-
cation task. Recently, Google released an essay
about BERT and its code. They also provided the
performance of BERT model on different tasks in
the essay. One of them is similar to our task, which
is called SST-2. It is a binary classification task,
which is The Stanford Sentiment Treebank, a bina-
ry single-sentence classification task consisting of
sentences extracted from movie reviews with hu-
man annotations of their sentiment. According to
the result (about 95% accuracy), BERT perform
pretty well on SST-2 task.

We chose to use BERT to do the task since it
had better result on binary classification. We will
introduce the BERT model and its detailed imple-
mentation in this section. In the following part, we
will introduce the model architecture, input repre-
sentation, pre-training procedure, and fine-tuning
procedure.

2.1 Model Architecture
The architecture of BERT is a multi-layer bidirec-
tional Transformer encoder. In this model, it in-
dicates the number of layers as L, the hidden size
as H, and the number of self-attention heads as A.
It set the feed-forward/filter size to be 4H. It also
provides two model sizes.

• BERT-Base: L=12, H=768, A=12, Total Pa-
rameters=110M

• BERT-Large: L=24, H=1024, A=16, Total
Parameters=340M

2.2 Input Representation
No matter the input in one token sequence is a
single text sentence or a pair of text sentences,
BERT input representation is capable of represent-
ing them. To construct the input representation of



1038

a given token, we merged the corresponding token,
segment and position embeddings.

2.3 Google pre-trained BERT

Instead of using traditional left-to-right or right-to-
left language models, Google pre-train BERT us-
ing two new unsupervised prediction tasks which
are Masked LM and Next Sentence Prediction.

2.4 Fine-tuning Procedure

It is easy to do BERT fine-tuning for sequence-
level classification tasks. By construction corre-
sponds to the special [CLS] word embedding, we
take the final hidden state (i.e., the output of the
Transformer) for the first token in the input for the
interest of obtaining a fixed-dimensional pooled
representation of the input sequence. We denote
this vector as C ∈ RH . Additionally, the only
new parameters added during fine-tuning are for
a classification layer W ∈ RK∗H . (K is the num-
ber of classifier labels). The label probabilities P∈
RK are computed using a standard softmax, P =
softmax(CW T ). All the parameters of BERT and
W are fine-tuned cooperatively to maximize the
log-probability of the correct label. Some modi-
fication must be done slightly on the above proce-
dure in a particular task manner for span-level and
token-level prediction tasks.

3 Experiments

3.1 Parse on the Datasets

A good training data cannot be made without data
cleaning. There were 600,000 training data (by
publisher) and 150,000 validation data (by pub-
lisher) and 645 training data (by article). For such
a huge dataset, we first split data into 75 separated
files, each contained 10,000 news articles so that
they were easy to be opened by text editors.

After doing this, we used JAVA to do data pars-
ing and cleaning and BERT model to do bias
analysis and prediction. In the articles, some
of the characters are escaped as HTML such as
that “ & “ became &amp. It was really easy to
unescape them with Java, which involved only
one line of method invocation: StringEscapeUti-
ls.unescapeHtml4().

There were some unknown Unicode characters
in the articles, so it is good to be removed. Unfor-
tunately, when applying some regular expression-
s to the articles to remove those characters, some
of the articles in other languages would be gone,

for example, Chinese, since it was hard to find all
the occurring unknown characters in all news arti-
cles and we had to use a simple method which was
blindly removing all the words, not in the range of
\x00 to \x7F in Unicode. So, all the unknown
characters could not be removed in order for re-
taining meaningful words in other languages.

Another problem was that most of the articles
contained too many urls and a number of html tags
because these articles are parsed from the internet.
These might affect the performance and accuracy,
so we used a set of regular expressions to catch
and remove all the urls and html tags in different
forms. Finally, another regular expression was ap-
plied to remove the duplicate punctuation such as
a line of only periods to divide the articles.

3.2 Models and Training
After cleaning the data, we used BERT to train it
with two procedures, which are pre-training and
fine-tuning procedures.

3.2.1 Pre-training Procedure
According to Google, BERT needs plenty of time
and resources to finish the pre-training procedure.
Google used 4 Cloud TPUs in Pod configuration
(16 TPU chips total) to train BERT-Base mod-
el. Considering the limited time and resource, we
decided to download the pre-training model from
Google instead of training it by ourselves. For
the reason that the data consisted of different lan-
guages and Google only released the base model
for multilingual data, we could only choose this,
which is shown below:

• BERT-Base, Multilingual Cased: 104lan-
guages, L=12, H=768, A=12, Total Param-
eters=110M

3.2.2 Fine-tuning procedure
3.2.2.1 Modify processor
BERT needs an explicit input to train or predict,
and it contains the processor to process the input
of the model. For our task, we created a new pro-
cessor for the dataset.

For a model that needs to perform a com-
plete process of training, cross-validation, and
testing, our custom processor needed to inher-
its the DataProcessor, overloads the get labels
function to gain label and also overloads the
get train examples function, get dev examples
function and get test examples function to get



1039

the individual input. These are invoked in the
main function flags.do train, flags.do eval, and
flags.do predict phases, respectively. The contents
of the three functions are much the same, excep-
t that you specify the address of the file to be read
into.

Modifying get train examples function, the
function needed to return a list which is made
up by InputExample class. The InputExam-
ple class only contained the initialization func-
tions. The initialization function only needed
the variable guid, which was used to distinguish
each example and it could be defined as train-
%d’%(i) way. text a is one string, text b is another
string. Text a and text b are two strings and they
were merged with [CLS] and [SEP] to become
[CLS]text a[SEP]text b[SEP]. This merged string
was then given to the model. The last parameter,
label, was also a string, and it should be guaran-
teed to appear in the list returned by the get labels
function.

Functions get dev examples and
get test examples were modified using the
same method above.

3.3 Results

The prediction procedure was done with the
TIRA(Potthast et al., 2019) machine provided by
the organizer.

Prediction on Training Set

We split the training set to get the validation set
and the test set. The first experiment contained
10000 training articles, 2000 validation articles,
2000 test articles. Also, the proportion of the
five categories was equal in the three sets mention
above. All the articles are received from them in
order from the given training set. Figure 1 shows
the result of our first experiments.

Prediction on Test Set

In the second experiment, we directly used the
aforementioned model to predict the given test set
(byarticle) since the result was so good in the first
experiment. But the accuracy was dropped down
to 0.6077. The results is shown on the figure 2.

Prediction on Final Test Set

The accuracy we obtained in the second exper-
iment was so bad and we thought that it was
due to a lack of training data. So, we antici-
pated that more training data would help. Nex-

Figure 1: First experiment accuracy:0.9125,
0 is not bias,1 is bias.

Figure 2: Second experiment accuracy:0.6077,
0 is not bias,1 is bias.

t, we trained all the data and predicted the
test set pan19-hyperpartisan-news-detectionby-
article-test-dataset-2018-12-07. The result was
even worse in this final experiment, which is
shown in the figure 3. The accuracy dropped to
the lowest point, 0.5031. It was just like random
guessing.

3.4 Error Analysis
We guess the reason why we get two different ac-
curacies in two kinds of articles (by publisher, by
article), is that the source of these two articles are
different. Data by publisher is decided by the press
and publisher, and the other is decided by manual
selection. We only trained the data by publisher,
so, it seems that it will not perform well on the
type of data by article.

4 Conclusion

It was a great experience to use BERT to do the
hyperpartisan news detection task although the
result was not quite promising compared with the



1040

Figure 3: Final experiment accuracy:0.5031.

one that Google has achieved. There are many
works we can improve in this task, for example,
we may do text summarization before training the
data since every article is very long. All in all,
more effort still need to be spent in the future time.

References
Anish Anil Patankar and Joy Bose. 2017. Bias discov-

ery in news articles using word vectors. pages 785–
788.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Mohit Iyyer, Peter Enns, Jordan L. Boyd-Graber, and
Philip Resnik. 2014. Political ideology detection us-
ing recursive neural networks. In ACL.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

Martin Potthast, Tim Gollub, Matti Wiegmann, and
Benno Stein. 2019. TIRA Integrated Research Ar-
chitecture. In Nicola Ferro and Carol Peters, edi-
tors, Information Retrieval Evaluation in a Chang-
ing World - Lessons Learned from 20 Years of CLEF.
Springer.

https://doi.org/10.1109/ICMLA.2017.00-62
https://doi.org/10.1109/ICMLA.2017.00-62
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805

