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Abstract

We present the SemEval-2019 Task 12 which
focuses on toponym resolution in scientific ar-
ticles. Given an article from PubMed, the
task consists of detecting mentions of names
of places, or toponyms, and mapping the
mentions to their corresponding entries in
GeoNames.org, a database of geospatial loca-
tions. We proposed three subtasks. In Sub-
task 1, we asked participants to detect all to-
ponyms in an article. In Subtask 2, given to-
ponym mentions as input, we asked partici-
pants to disambiguate them by linking them
to entries in GeoNames. In Subtask 3, we
asked participants to perform both the de-
tection and the disambiguation steps for all
toponyms. A total of 29 teams registered,
and 8 teams submitted a system run. We
summarize the corpus and the tools created
for the challenge. They are freely available
at https://competitions.codalab.
org/competitions/19948. We also an-
alyze the methods, the results and the errors
made by the competing systems with a focus
on toponym disambiguation.

1 Introduction

Toponym resolution, also known as geoparsing,
geo-grounding or place name resolution, aims
to assign geographic coordinates to all location
names mentioned in documents. Toponym res-
olution is usually performed in two independent
steps. First, toponym detection or geotagging,
where the span of place names mentioned in a doc-
ument is noted. Second, toponym disambiguation
or geocoding, where each name found is mapped
to latitude and longitude coordinates correspond-
ing to the centroid of its physical location. To-
ponym detection has been extensively studied in
named entity recognition: location names were
one of the first classes of named entities to be
detected in text (Piskorski and Yangarber, 2013).

Disambiguation of toponyms is a more recent task
(Leidner, 2007).

With the growth of the internet, the public adop-
tion of smartphones equipped with Geographic In-
formation Systems and the collaborative devel-
opment of comprehensive maps and geographi-
cal databases, toponym resolution has seen an im-
portant gain of interest in the last two decades.
Not only academic but also commercial and open
source toponym resolvers are now available. How-
ever, their performance varies greatly when ap-
plied on corpora of different genres and domains
(Gritta et al., 2018). Toponym disambiguation
tackles ambiguities between different toponyms,
like Manchester, NH, USA vs. Manchester, UK
(Geo-Geo ambiguities), and between toponyms
and other entities, such as names of people or
daily life objects (Geo-NonGeo ambiguities). Ad-
ditional linguistic challenges during the resolution
step may be metonymic usage of toponyms, “91%
of the US didn’t vote for either Hilary or Trump”
(a country does not vote, thus the toponym refers
to the people living in the country), elliptical con-
structions, “Lakeview and Harrison streets” (the
phrase refers to two street names Lakeview street
and Harrison street), or when the context simply
does not provide enough evidences for the resolu-
tion.

Although significant progress has been made in
the last decade on toponym resolution, it is still
difficult to determine precisely the current state-
of-the-art performances (Leidner and Lieberman,
2011). As emphasized by several authors (To-
bin et al., 2010; Speriosu, 2013; Weissenbacher
et al., 2015; Gritta et al., 2018; Karimzadeh and
MacEachren, 2019), the main obstacle is that few
corpora of large size exist or are freely available.
Consequently, researchers create their own (lim-
ited) corpora to evaluate their system, with the
known drawbacks and biases that this implies.

https://competitions.codalab.org/competitions/19948
https://competitions.codalab.org/competitions/19948
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Moreover, one corpus is not sufficient to evaluate
a toponym resolver thoroughly, as the domain of a
corpus strongly impacts the performance of a re-
solver. A disambiguation strategy can be optimal
on one domain and damaging on another. In (Spe-
riosu, 2013), Speriosu illustrates that toponyms
occurring in historical literature will tend to re-
solve within a local vicinity, whereas toponyms
occurring in international press news refer to the
most prominent places by default. Otherwise ad-
ditional information is provided to help the reso-
lution (ex. Paris, the city in Texas).

In this article we first define the concept of to-
ponym and detail the subtasks of this challenge
(Section 3). Then, we summarize how we ac-
quired and annotated our data (Section 4). In Sec-
tion 5, after describing the evaluation metrics, we
briefly describe the resources and the baseline sys-
tem provided to the participants. In the last Sec-
tion 6 we discuss the results obtained and the po-
tential future direction for the task of toponym res-
olution.

2 Related Work

The Entity Linking task aims to map a name of
an entity with the ID of the corresponding en-
tity in a predefined Knowledge database (Bada,
2014). Entity linking has been largely studied by
the community (Shen et al., 2015). Toponym res-
olution is a special case of the entity linking task
where strategies dedicated to toponyms can im-
prove overall performances. Three main strate-
gies have been proposed in the literature. The first
exploits the linguistic context where a toponym
is mentioned in a document. The vicinity of the
toponym often contains clues that help the read-
ers to interpret it. These clues can be other to-
ponyms (Tobin et al., 2010), other named entities
(Roberts et al., 2010), or even more generally, spe-
cific topics associated more often with a particular
toponym than with others (Speriosu, 2013; Adams
and McKenzie, 2013; Ju et al., 2016). The sec-
ond strategy relies on the physical properties of
the toponyms to disambiguate their mentions in
documents. The population heuristic or the min-
imum distance heuristic are popular heuristics us-
ing such properties. The population heuristics dis-
ambiguates toponyms by taking, among the am-
biguous candidates, the candidate with the largest
population, whereas the minimum distance heuris-
tic disambiguates all toponyms in a document by

taking the set of candidates that are the closest
to each other (Leidner, 2007). A recent heuris-
tic computes from Wikipedia a network express-
ing important toponyms and their semantic rela-
tion with other entities. The network is then used
to disambiguate jointly all toponyms in a doc-
ument (Hoffart and Weikum, 2013; Spitz et al.,
2016). The last strategy is less frequently used
as it depends on metadata describing the doc-
uments where toponyms are mentioned. These
metadata are of various kinds, but they all indi-
cate, directly or not, geographic areas to help in-
terpret toponyms mentioned in documents. Such
metadata can be geotagging of social media posts
(Zhang and Gelernter, 2014) or external databases
structuring the information detailed in a document
(Weissenbacher et al., 2015). These three strate-
gies are complementary and can be unified with
machine learning algorithms as shown by (Santos
et al., 2015) or (Kamalloo and Rafiei, 2018).

3 Task Description

The definition of toponym is still in debate among
researchers. In its simpler definition, a toponym is
a proper name of an existing populated place on
Earth. This definition can be extended to include a
place or geographical entity that is named, and can
be designated by a geographical coordinate1. This
encompasses cities and countries, but also lakes
or monuments. In this challenge we consider the
extended definition of toponyms and exclude all
indirect mentions of places such as “30 km north
from Boston”, as well as metonymic usage and el-
liptical constructions of toponyms.

Subtask 1: Toponym Detection Toponym de-
tection consists of detecting the text boundaries of
all toponym mentions in full PubMed articles. For
example, given the sentence An H1N1 virus
was isolated in 2009 from a child
hospitalized in Nanjing, China., a
perfect detector, regardless how, would return two
pairs encoding the starting and ending positions
of Nanjing and China, i.e. (64, 70) and (73, 77).
Despite major progress, toponym detection is
still an open problem and it was evaluated in a
separate subtask since it determines the overall
performance of the resolution. Toponym mentions
missed during the detection cannot be disam-
biguated (False Negative, FN) and, inversely,

1https://unstats.un.org/unsd/geoinfo/
UNGEGN/

https://unstats.un.org/unsd/geoinfo/UNGEGN/
https://unstats.un.org/unsd/geoinfo/UNGEGN/
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phrases wrongly detected as toponyms will re-
ceived geocoordinates during the disambiguation
(False Positive, FP). Both FNs and FPs degrade
the quality of the overall resolution.

Subtask 2: Toponym Disambiguation The
second subtask focuses on the disambiguation of
the toponyms only. In this subtask, all names of
locations in articles are known by a disambigua-
tor but not their precise coordinates. The disam-
biguator has to select the GeoNames IDs corre-
sponding to the expected places among all pos-
sible candidates. GeoNames2 is a crowdsourced
database of geospatial locations and freely avail-
able. Following with our previous example, given
the position of Nanjing in the sentence, a per-
fect disambiguator, regardless how, would have to
choose among 12 populated places named Nanjing
located in China in GeoNames and return the en-
try 7843770 in GeoNames. The disambiguator has
to infer the expected place based on all informa-
tion available in the article and not only based on
the sentence. This subtask allows one to measure
the performance of the disambiguation algorithms
independently from the performances of the to-
ponym detector used upstream.

Subtask 3: End-to-end, Toponym Resolution
The last subtask evaluates the toponym resolver as
it would be when deployed in real-world applica-
tions. Only the full PubMed articles are given to
the resolver and all toponyms detected and disam-
biguated by the resolver are evaluated.

4 Data and Resources

4.1 A Case Study: Epidemiology of Viruses

The automatic resolution of the names of places
mentioned in textual documents has multiple ap-
plications and, therefore, has been the focus of re-
search for both industrial and academic organiza-
tions. For this challenge, we chose a scientific do-
main where the resolution of the names of places
is key: epidemiology.

One aim in epidemiology might be to create
maps of the locations of viruses and their migra-
tion paths, a tool which is used to monitor and
intervene during disease epidemics. To create
maps of viruses, researchers often use geospatial
metadata of individual sequence records in public
databases such as NIH’s GenBank (Benson et al.,

2https://www.geonames.org/

2017)3. The metadata provides the location of the
infected host. With more than 3 million virus se-
quences4, GenBank provides abundant informa-
tion on viruses. However, previous work has sug-
gested that geospatial metadata, when it is not sim-
ply missing, can be too imprecise for local-scale
epidemiology (Scotch et al., 2011). In their ar-
ticle Scotch et al., 2011 estimate that only 20%
of GenBank records of zoonotic viruses contain
detailed geospatial metadata such as a county or
a town name (zoonotic viruses are viruses able
to infect naturally hosts of different species, like
rabies). Most GenBank records provide generic
information, such as Japan or Australia, without
mentioning the specific places within these coun-
tries. However, more specific information about
the locations of the viruses may be present in arti-
cles which describe the research work. To create a
complete map, researchers are then forced to read
these articles to locate in the text these additional
pieces of geospatial metadata for a set of viruses of
interest. This manual process can be highly time-
consuming and labor-intensive.

This challenge was an opportunity to assess
the development and evaluation of automated ap-
proaches to retrieve geospatial metadata with finer
level of granularity from full-text journal arti-
cles, approaches that can be further transferred or
adapted to resolve names of places in other scien-
tific domains.

4.2 Corpus Collection

Our corpus is composed of 150 full text journal
articles downloaded from the subset of PubMed
Central (PMC) in open access5. All articles in this
subset of PMC are covered by a Creative Com-
mons license and free to access. We built our cor-
pus using three queries on GenBank.

Subset A: For the first 60 articles, we down-
loaded 102,949 GenBank records that were linked
to NCBI taxonomy id 197911 for influenza A. The
downloaded records were associated with 1,424
distinct PubMed articles and 598 of them had links

3For this competition we chose to work with PubMed ar-
ticles and the GenBank database as they provide more com-
plete and detailed information for epidemiology than public
health reports.

4Last accessed April 2019 with the query:
https://www.ncbi.nlm.nih.gov/nuccore/
?term=txid10239[Organism:exp]

5https://www.ncbi.nlm.nih.gov/pmc/
tools/openftlist/

https://www.geonames.org/
https://www.ncbi.nlm.nih.gov/nuccore/?term=txid10239[Organism:exp]
https://www.ncbi.nlm.nih.gov/nuccore/?term=txid10239[Organism:exp]
https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
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to an open access journal article in PubMed Cen-
tral (PMC). We randomly sampled 60 articles from
this set of 598 articles for manual annotation.

Subset B: We selected 60 additional articles by
expanding our search to GenBank records linked
to influenza B and C, rabies, hantavirus, west-
ern equine encephalitis, eastern equine encephali-
tis, St. Louis encephalitis, and West Nile virus.
Our query returned a total of 544,422 GenBank
records. We randomly selected a subset of records
associated with 1,915 unique open access PMC
articles. From these 1,915 articles, we randomly
selected for toponym annotation a stratified sam-
ple of 60 articles, where strata were based on the
number of GenBank records associated with the
articles.

Subset C: We completed our corpus with 30
biomedical research articles to decrease bias and
increase the generalizability of our corpus beyond
toponym mentions in virus related research arti-
cles. From the 1,341 research articles returned by
the search in PMC of the journal titles with the
Article Attribute of Open access, we randomly se-
lected 30 articles from top epidemiology journals,
as determined by their impact factor in September
2018.

Since the 60 articles from Subset A had been
used in our prior publications (Weissenbacher
et al., 2015, 2017), we kept them all for training.
We randomly selected half of the articles from
Subset B and Subset C for training and left the sec-
ond half for testing. The resulting corpus of 105
articles for training and 45 for testing was used for
all three subtasks of the competition. The corpus
is available for download on the Codalab used for
the competition: https://competitions.
codalab.org/competitions/20171#
learn_the_details-data_resources.

4.3 Annotation Process

To perform the annotation, we manually down-
loaded the PDF versions of the PMC articles and
converted them to text files using the freely avail-
able tool, Pdf-to-text6. We formatted the output to
be compatible with the BRAT annotator7 (Stene-
torp et al., 2012). We manually detected and
disambiguated the toponyms using GeoNames.
We annotated toponyms in titles, bodies, tables

6http://www.foolabs.com/xpdf/download
7http://brat.nlplab.org/index.html

and captions sections of the documents. We re-
moved contents that would not contain virology-
related toponyms, such as the names of the au-
thors, acknowledgments and references, this was
done manually. In cases where a toponym could
not be found in GeoNames, we set its coordinates
to a special value N/A. Prior to beginning annota-
tion, we developed a set of annotation guidelines
after discussion among three annotators. The re-
sulting guidelines are also available in the Codalab
of the competition. Two annotators were under-
graduate students in biomedical informatics and
biology, respectively, and our senior annotator has
a M.S. in biomedical informatics.

Two annotators annotated independently 58 ar-
ticles of Subset B to estimate the inter-annotator
agreement. Since the detection task is a named-
entity recognition task, we followed the recom-
mendations of Rothschild and Hripcsak (2005)
and used precision and recall metrics to estimate
the inter-annotator rate. The inter-annotator agree-
ment rate on the toponym detection was .94 preci-
sion (P) and .95 recall (R) which indicates a good
agreement between the annotators. The inter-
annotator agreement rate on the toponym disam-
biguation was 0.857 Accuracy. Subset C was also
annotated by two annotators, although not inde-
pendently, to ensure the quality of the annotation
of all documents occurring in the test set of the
competition.

The corpus contains a total of 1,506 distinct to-
ponyms for a total of 8,360 occurrences. 1,228
of these toponyms occur in only one document (a
document may include multiple occurrences). The
average number of occurrences for a toponym is
5.5 with China being the most mentioned toponym
with a total of 417 occurrences. The average ambi-
guity is about 26.3 candidates per toponym which
is comparable to the average ambiguity found in
existing corpora (Speriosu, 2013). The location
San Antonio was the most ambiguous with 2633
possible candidates. 232 toponyms (531 occur-
rences) were not found in GeoNames using a strict
match, this was caused by multiple reasons, like
misspellings, non standard-abbreviations, missing
entries in GeoNames, etc. 142 countries and con-
tinents are mentioned in our corpus with a total of
3,105 occurrences. The resolution of country and
continent names are easier than other places but
they represent only 37% of the total of the occur-
rences, making our corpus challenging.

https://competitions.codalab.org/competitions/20171#learn_the_details-data_resources
https://competitions.codalab.org/competitions/20171#learn_the_details-data_resources
https://competitions.codalab.org/competitions/20171#learn_the_details-data_resources
http://www.foolabs.com/xpdf/download
http://brat.nlplab.org/index.html


911

5 Evaluation

5.1 Toponym Resolution Metrics
When a gold standard corpus and a toponym
resolver are aligned on the same geographical
database, here the database GeoNames, the stan-
dard metrics of precision, recall and F-measure
can be used to measure the performance of the
resolver. For this challenge, we report all results
by using two common variations of these metrics:
strict and overlapping measures. In the strict mea-
sure, resolver annotations are considered matching
with the gold standard annotations if they hit the
same spans of text; whereas in overlapping mea-
sure, both annotations match when they share a
common span of text.

We computed the P and R for toponym detec-
tion with the standard equations: Precision =
TP/(TP +FP ) and Recall = TP/(TP +FN),
where TP (True Positive) is the number of to-
ponyms correctly identified by a toponym detec-
tor in the corpus, FP (False Positive) the number
of phrases incorrectly identified as toponyms by
the detector, and FN (False Negative) the number
of toponyms not identified by the detector.

To evaluate the toponym disambiguation, we
modified the equations computing the P and R
used for toponym detection in order to account
for both detection and disambiguation errors. The
precision of the toponym disambiguation is given
by the equation: Pds = TCD/TCD + TID,
where TCD is the number of toponyms correctly
identified and disambiguated by the toponym dis-
ambiguator in the corpus and TID is the number
of toponyms incorrectly identified or incorrectly
disambiguated in the corpus. The recall of the to-
ponym disambiguation was computed by the equa-
tion: Rds = TCD/TN , where TN is the total
number of toponyms in the corpus. F1ds is the har-
monic mean of Pds and Rds. Since the resolvers
competing and the gold corpus annotations were
aligned on GeoNames, toponyms correctly identi-
fied were known by a simple match between the
place IDs retrieved by the resolvers and those an-
notated by the annotators.

5.2 Baseline System
We released an end-to-end system to be used as
a strong baseline. This system performs sequen-
tially the detection and the disambiguation of the
toponyms in raw texts. To detect the toponyms
the system uses a feedforward neural network

described in (Magge et al., 2018). The disam-
biguation of all toponyms detected is then per-
formed using a common heuristic, the population
heuristic. Using this heuristic, the system always
disambiguates a toponym by choosing the place
which has the highest population in GeoNames.
The baseline system can be downloaded from the
Codalab website of the competition. We also
made available to the participants a Rest service to
search a recent copy of GeoNames, the documen-
tation and the code to deploy the service locally
can be found on the Codalab website.

6 Systems

6.1 Results

Twenty nine teams registered to participate in the
shared-task and eight teams submitted. 21/8/13
submissions from 8/4/6 teams were included in the
final evaluations of sub-task 1/2/3 respectively. All
systems which attempted to resolve the toponyms
in Subtask 3 opted for a pipeline architecture
where the detection and the disambiguation steps
were performed independently and sequentially.
Table 1 summarizes the characteristics of the sys-
tems along with their use of external resources.
Tables 2, 3 and 4 presents the performances for
each team. Team DM NLP achieved the best per-
formances on all sub-tasks (Wang et al., 2019).

Toponym Detection: With all systems but one,
Deep Recurrent Neural Networks were the most
commonly used and efficient technology to detect
toponyms in our corpus. Their architectures varied
with respect to the integration of character embed-
ding layers, mechanisms of attention, integration
of external features (such as POS tagging or other
Named Entities) or the choice of a general or in
domain corpus for pre-training their word and sen-
tence embeddings. In our epidemiological corpus,
toponyms were not only mentioned in the body
of the articles but also in tables. And interest-
ingly, top ranked systems detected the toponyms
with two different algorithms, one dedicated to the
body and one to the tables of the articles. The
top ranking system outperformed other competi-
tors for Subtask 1 significantly, with a margin of
4 points separating it from the second ranked sys-
tem, even though the same technology was used.
Both teams used dedicated algorithms for bodies
and tables but Team DM NLP implemented sev-
eral strategies to improve the pre-training of their



912

Toponym Detection
Rank Team System details
1 DM NLP Architecture: Ensemble of C biLSTM + W biLSTM + FF + CRF

(Alibaba Group) Details: word2vec/ELMo embeddings, POS + NE + Chunk features
Resources: OntoNote5.0, CoNLL’13 and Weakly labeled training corpora

3 UniMelb Architecture: W biLSTM + FF + SoftMax
(University of Melbourne) Details: Glove/ELMo embeddings, Self-Attention

Resources: WikiNER, inhouse gazetteer of place name abbreviations
& organization names classifier

4 UArizona Architecture: C biLSTM + W biLSTM + CRF
(University of Arizona) Details: Glove embeddings, affixes features

Resources: Weakly labeled training corpus
5 THU NGN Architecture: Ensemble of C CNN + W biLSTM + CRF

(Tsinghua University) Details: Glove/Word2Vect/FastText/ELMo/Bert embeddings,
LM + POS + Lexicon features

6 UNH Architecture: 1. W biLSTM + CRF; 2. W CNN + FF + sigmoid;
(University of New Hampshire) 3. W FF + sigmoid

Details: word2vec/ELMo embeddings, orthographic + lexicon features
8 RGCL-WLV Architecture:1. W biGRU + capsule + FF + sigmoid;

(University of Wolverhampton/ 2. W biLSTM + W biGRU + FF + sigmoid; 3. traditional classifiers
Universidad Politecnica de Madrid) Details: word2vec embeddings, Self-attention

Resources: ANNIE’s gazetteer of regions
& inhouse gazetteer of US regions and abbreviations

Toponym Disambiguation
Rank Team System details
1 DM NLP Strategy: Ranking candidates + Stacking LightGBM classifiers

External Resources: Wikipedia
3 UniMelb Strategy: Ranking candidates + SVM Classifier
4 UArizona Strategy: Population heuristic
6 THU NGN Strategy: Toponym frequencies + population heuristic

Table 1: System and resource descriptions for toponym resolution8.
8 We use C biLSMT and C CNN to denote bidirectonal LSTMs or CNNs encoding sequences of characters, W biLSTM,

W biGRU and W FF to denote bidirectional LSTMs/GRUs or Feed Forward encoders of word embeddings.

Strict macro Strict micro Overlap macro Overlap micro
Team P R F1 P R F1 P R F1 P R F1

DM NLP .9265 .9060 .9161 .9292 .8564 .8913 .9456 .9238 .9346 .9539 .8797 .9153
DM NLP .9214 .9010 .9111 .9222 .8512 .8853 .9447 .9224 .9334 .9510 .8776 .9128
DM NLP .9201 .9000 .9100 .9117 .8479 .8786 .9419 .9204 .9311 .9412 .8756 .9072
UniMelb .8827 .8598 .8711 .8469 .7748 .8092 .9222 .8911 .9064 .9135 .8283 .8688

QWERTY .9015 .8426 .8710 .8935 .7808 .8333 .9277 .8622 .8937 .9258 .8096 .8638
UArizona .8869 .8073 .8452 .8797 .7068 .7838 .9084 .8268 .8657 .9114 .7357 .8142
UArizona .8803 .8079 .8426 .8792 .7131 .7875 .9027 .8279 .8637 .9099 .7412 .8169
UArizona .8897 .7960 .8403 .8825 .6972 .7790 .9112 .8152 .8606 .9144 .7262 .8095

THU NGN .8897 .7818 .8323 .8647 .6615 .7496 .9221 .8125 .8639 .9136 .7025 .7943
THU NGN .8951 .7743 .8303 .8745 .6489 .7450 .9257 .8015 .8592 .9186 .6849 .7847
THU NGN .8966 .7699 .8284 .8715 .6497 .7444 .9254 .7961 .8559 .9197 .6892 .7879

UNH .8616 .7810 .8193 .8354 .6500 .7312 .9100 .8189 .8620 .8968 .7035 .7885
UniMelb .8402 .7967 .8179 .8023 .6768 .7342 .8866 .8398 .8626 .8795 .7440 .8061

UNH .8360 .7374 .7836 .8073 .6175 .6998 .9079 .7882 .8438 .9132 .6971 .7906
Baseline .8246 .7345 .7770 .8032 .5973 .6851 .8989 .7810 .8358 .9038 .6719 .7708

UNH .8111 .7403 .7741 .7819 .6459 .7074 .8859 .7984 .8399 .8904 .7372 .8066
NLP IECAS .8111 .6944 .7482 .7807 .5414 .6394 .8601 .7187 .7831 .8421 .5808 .6874
NLP IECAS .7527 .7226 .7373 .7298 .5796 .6461 .8209 .7700 .7946 .8155 .6457 .7207
NLP IECAS .7395 .7334 .7364 .7270 .5853 .6485 .8101 .7824 .7960 .8143 .6553 .7262
RGCL-WLV .8392 .4911 .6196 .8210 .3505 .4913 .9032 .5117 .6533 .8926 .3743 .5274
RGCL-WLV .8200 .4844 .6090 .8021 .3464 .4839 .8928 .5082 .6477 .8850 .3746 .5264
RGCL-WLV .8280 .4746 .6034 .8168 .3396 .4798 .8980 .4969 .6398 .8936 .3654 .5187

Table 2: Results of the toponym detection task, Subtask 1.
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system which, according to their ablation study
(Wang et al., 2019), proved to be effective9. Note
that the performance of the first system is close to
our IAA for toponym detection.

Toponym Disambiguation: All systems re-
lied on handcrafted features to disambiguate to-
ponyms. Their features described the lexical con-
text of the toponyms and their importance. The
importance of the toponyms was estimated by
the frequencies of the candidates in the training
data or by their populations. While the two top
ranked systems combined such features with ma-
chine learning, SVM for UniMelb and a gradient
boosting algorithm for DM NLP, others just en-
coded them into hard rules leading to suboptimal
disambiguation.

6.2 Analysis

We analyzed a sample of errors to understand the
remaining challenges for toponym disambiguation
systems based on the results of Sub-task 2. We
randomly selected 10 articles and analyzed 103
mentions of toponyms disambiguated incorrectly
by all systems. We manually found 5 distinct cat-
egories of errors. For the largest category of er-
rors, with 62 cases, the systems missed context
clues used by the authors of the articles to con-
vey the correct interpretation of the toponym and
chose the wrong candidates. Such clues include
the mention of a country in the header of a table or
the explicit mention of a district after an ambigu-
ous toponym. 17 errors were due to the systems
not complying with the guidelines, selecting in-
stead populated places or cities when the expected
choices were toponyms with a higher administra-
tive level. 8 candidates were not found in GeoN-
ames by strict or fuzzy matching because of their
surface forms. These were unconventional abbre-
viations, rare acronyms or words split by a hyphen.
Despite our efforts to limit annotation errors, 15
were found in our sample10. The last error was a
toponym where the choice made by the annotators
can be argued.

9Team QWERTY did not describe their system at the time
of writing. We were therefore unable to compare it with other
systems.

10Since we analyzed entire articles, this count includes
multiple mentions of the same toponym repeatedly annotated
with the same error

7 Conclusion

In this paper we presented an overview of the re-
sults of SemEval 2019 Task 12 which focuses on
toponym resolution in scientific articles. Given an
article from PubMed, the task consists of detect-
ing all mentions of place names, or toponyms, in
the article and mapping them to their correspond-
ing entry in GeoNames, a database of geospatial
locations. All systems resolved the toponyms in
our corpus sequentially, detecting the toponyms
before disambiguating them. Among the 21 sys-
tems submitted for toponym detection, neural net-
work based approaches were the most popular and
the most efficient to detect toponyms with scores
approaching the Inter-Annotator agreement. One
key to success for the top ranked systems was
to design two different algorithms to detect to-
ponyms in the body and in the tables of the ar-
ticles. The disambiguation of the toponyms re-
mains challenging. Despite a clever use of rules or
machine learning to combine features describing
the lexical context of the toponyms and their im-
portance from the 4 competing systems, the strict
macro F1ds score of .82 of the best system sig-
nals space for improvement. Our analysis of com-
mon disambiguation errors reveals that it is still
difficult for the systems to capture linguistic evi-
dence in the context of the toponyms that dictate
their disambiguation, causing 60% of the errors of
the systems. The end-to-end performance of the
best toponym resolver was .77 F1ds strict macro, a
score high enough for scientists to benefit from au-
tomation to reduce their workload when extracting
toponyms from the voluminous and quickly grow-
ing literature, while still leaving room for techni-
cal improvement.
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Strict macro Strict micro
Team F1ds F1ds

DM NLP .8234 .7781
DM NLP .8215 .7821
UniMelb .8180 .7759
UniMelb .8180 .7759
DM NLP .8070 .7521
Baseline .7400 .6768

NLP IECAS .7233 .6582
NLP IECAS .7230 .6607
THU NGN .6721 .5886

Table 3: Results of the toponym disambiguation task, Subtask 2.

Toponym Detection
Strict macro Strict micro Overlap macro Overlap micro

Team P R F1 P R F1 P R F1 P R F1
DM NLP (run 2) .9265 .9060 .9161 .9292 .8564 .8913 .9456 .9238 .9346 .9539 .8797 .9153
QWERTY (run 1) .9203 .9095 .9148 .9214 .8706 .8953 .9438 .9311 .9374 .9501 .8972 .9229
DM NLP (run 1) .9214 .9010 .9111 .9222 .8512 .8853 .9447 .9224 .9334 .9510 .8776 .9128
DM NLP (run 3) .9201 .9000 .9100 .9117 .8479 .8786 .9419 .9204 .9311 .9412 .8756 .9072
UniMelb (run 2) .8821 .8598 .8708 .8464 .7748 .8090 .9215 .8911 .9061 .9130 .8283 .8686
UniMelb (run 1) .8884 .8124 .8487 .8767 .6986 .7776 .9349 .8442 .8872 .9322 .7448 .8280
UArizona (run 3) .8869 .8073 .8452 .8797 .7068 .7838 .9084 .8268 .8657 .9114 .7357 .8140
UArizona (run 2) .8803 .8079 .8426 .8792 .7131 .7875 .9027 .8279 .8637 .9099 .7412 .8169
UArizona (run 1) .8897 .7960 .8403 .8825 .6972 .7790 .9112 .8152 .8606 .9144 .7262 .8095

THU NGN (run 1) .8951 .7743 .8303 .8745 .6489 .7450 .9257 .8015 .8592 .9186 .6849 .7847
Baseline .8246 .7345 .7770 .8032 .5973 .6851 .8989 .7810 .8358 .9038 .6719 .7708

NLP IECAS (run 2) .8111 .6944 .7482 .7807 .5414 .6394 .8601 .7187 .7831 .8421 .5808 .6874
NLP IECAS (run 3) .8111 .6944 .7482 .7807 .5414 .6394 .8601 .7187 .7831 .8421 .5808 .6874
NLP IECAS (run 1) .7527 .7226 .7373 .7298 .5796 .6461 .8209 .7700 .7946 .8155 .6457 .7207

Toponym Disambiguation
Strict macro Strict micro Overlap macro Overlap micro

Team Pds Rds F1ds Pds Rds F1ds Pds Rds F1ds Pds Rds F1ds
DM NLP (run 2) .7840 .7661 .7749 .7601 .7005 .7291 .7887 .7715 .7800 .7646 .7060 .7341
DM NLP (run 1) .7762 .7587 .7674 .7513 .6934 .7212 .7840 .7667 .7753 .7593 .7019 .7295
QWERTY (run 1) .7597 .7506 .7551 .7336 .6931 .7128 .7677 .7586 .7631 .7417 .7016 .7211
UniMelb (run 2) .7437 .7276 .7355 .6848 .6268 .6545 .7510 .7368 .7438 .6964 .6399 .6670
UniMelb (run 1) .7286 .6711 .6987 .6876 .5479 .6098 .7331 .6777 .7043 .6941 .5564 .6177
UArizona (run 3) .6773 .6225 .6487 .6514 .5233 .5804 .6761 .6242 .6491 .6507 .5253 .5813
UArizona (run 2) .6739 .6243 .6482 .6533 .5299 .5852 .6725 .6256 .6482 .6521 .5313 .5855
UArizona (run 1) .6823 .6149 .6468 .6600 .5214 .5826 .6807 .6164 .6470 .6586 .5231 .5831

Baseline .6605 .5912 .6240 .6252 .4649 .5333 .6787 .6071 .6409 .6505 .4857 .5561
THU NGN (run 1) .6581 .5738 .6131 .6052 .4491 .5156 .6605 .5784 .6167 .6070 .4537 .5193

NLP IECAS (run 2) .6527 .5584 .6019 .6339 .4395 .5191 .6631 .5666 .6111 .6504 .4510 .5326
NLP IECAS (run 3) .6529 .5582 .6018 .6378 .4423 .5223 .6633 .5664 .6110 .6543 .4537 .5359
NLP IECAS (run 1) .5852 .5626 .5737 .5634 .4474 .4988 .5935 .5717 .5824 .5772 .4603 .5120

DM NLP (run 3) .0279 .0278 .0279 .0305 .0284 .0294 .0314 .0312 .0313 .0354 .0330 .0342

Table 4: Results of the toponym resolution task, Subtask 3.
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Abbreviations

POS: Part-Of-Speech
NER: Named Entity Recognition
LM: Language Model
ANNIE: A Nearly-New Information Extraction
SVM: Support Vector Machine
CRF: Conditional Random Field
FF: Feedforward
CNN: Convolutional Neural Network
biLSTM: bidirectional Long Short-Term Memory
biGRU: bidirectional Gated Recurrent Unit


