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Abstract

AiFu has won the first place in the SemEval-
2019 Task [10] - ”Math Question Answer-
ing”(Hopkins et al.) competition. This paper
is to describe how it works technically and to
report and analyze some essential experimen-
tal results.

1 Introduction

Recently, math question answering has attracted
a lot of attention in the AI community, both in
academia and in industry (Matsuzaki et al., 2017)
(Wang et al., 2017) (Huang et al., 2016) (Wang
et al., 2018) (Hosseini et al., 2014)(Huang et al.,
2018a) (Huang et al., 2018b) (Kushman et al.,
2014) (Liang et al., 2017) (Mitra and Baral, 2016)
(Zhou et al., 2015) (Roy and Roth, 2017)(Hopkins
et al., 2017). On one side, it raises a difficult yet
workable challenge for the current development
of AI research. In order to tackle this challenge,
one has to integrate and advance many subareas
in AI including knowledge representation and rea-
soning, machine learning, natural language under-
standing and image understanding. On the other
side, math question answering itself has important
commercial value in the AI+Education industry.

Against this backdrop, SemEval-2019 orga-
nizes a competition on math question answering,
namely Task 10 (Hopkins et al.). In this task,

an opportunity is provided for Math Question-
Answering systems to test themselves on a bench-
mark that consists of many math questions col-
lected from the US Math Scholastic Achievement
Test (SAT).

We have implemented a prototype system,
called AiFu, to tackle this challenge, and it has
won the first place at the end. AiFu is an in-
tegrated system that combines the state-of-the-art
approaches from many important subareas in AI,
and more importantly, it also develops and justifies
some new ideas and techniques.

This paper is to describe how AiFu works tech-
nically and to report and analyze some essential
experimental results. In the next section, we go
through the technical details of AiFu that consists
of many essential components including represen-
tation, reasoning and natural language understand-
ing. In Section 3, we report our experimental re-
sults and shed new insights on why AiFuworks in
some cases but not in others. Finally, we conclude
this paper and point out some future directions.

2 Method

Figure 1 depicts the overall architecture of AiFu.
Given a mathematical question, a translator is used
to convert it into its internal representation, which
is sent to an encoder to further convert it into a
math representation that can be directly used by
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the SMT solver Z3 (De Moura and Bjørner, 2008).
Finally, by calling Z3, the solution of the original
mathematical question is obtained.

2.1 Internal Representation
We use an internal representation language, called
Verb Connection Formula (VCF), to bridge the
gap between mathematical questions and their for-
mal mathematical counterparts.

VCF is based on assertional logic (Zhou, 2017),
in which all mathematical objects are formalized
as either individuals (constants and variables), or
concepts, or operators (functions and relations).
For instance, the natural language sentence “the
integer x equals to 3” is transformed to “Inte-
ger(x), Equal(x,3)” in VCF, where “x” and “3” are
individuals, “Integer” is a concept and “Equal” is a
Boolean operator, i.e., relation. Meta level math-
ematical concepts such as equation and inequal-
ity are represented as concepts in VCF too. For
instance, an equation 9 + 3n+2 = m in the ques-
tion is transformed to “Equation(9+3**(n+2)=m)”
in VCF, and an inequality xyz 6= 0 is trans-
formed into “Inequality(x*y*z!=0)”. VCF uses
the symbol : − for representing the implica-
tion relationship between statements. For in-
stance, the VCF representation of the natural lan-
guage sentence “When n is a positive integer,
9 + 3n+2 = m” is “(Equation(9+3**(n+2)=m)):-
(Positive(n),Integer(n))”.

2.2 Translator
The translator transforms mathematical questions
to corresponding statements in VCF.
Segmentation and POS tagging: Our translator
uses the Stanford NLP parser (Chen and Man-
ning, 2014) for segmentation and POS tagging.
In order to handle Math questions, we introduce
two new POS taggers, namely ”FORM” for in-
dicating Math formula and ”VAL” for indicating
variable. For example, the result of POS tagging
of ”When n is a positive integer, 9 + 3n+2 =
m” is ”When/WRB n/VAL is/VBZ a/DT posi-
tive/JJ integer/NN ,/PUNCTUATION 9 + 3n+2 =
m/FORM”.
Semantic parsing:

We adopt a top-down rule-based template ap-
proach for semantic parsing, i.e., translating math
questions in English to statements in VCF. As
shown in Table 1, we consider five basic clause
types, corresponding to five syntactic structures
respectively.

Type Description Examples
LEAF a single word ”If”,”percent”,

”of”
NOUN entity with ad-

junct words
”125 percent”

PREP relation with
multiple entities

125 percent of x

PRED clause with oper-
ators

”125 percent of x
is 150”

CONJ causal connec-
tion between two
clauses

”if 125 percent
of x is 150,what
is x percent of
75”

Table 1: Clause types

Algorithm 1 illustrates how to construct the se-
mantic parsing tree for each sentence in the ques-
tion from top to down. The root must be the sen-
tence itself. Each node is assigned with one of
the five types according to hand-crafted rule-based
templates. Based on which, we decompose it into
several child nodes correspondingly as different
clause types result in different kinds of decompo-
sition according to the templates. Note that each
leaf node must be assigned with LEAF.

Algorithm 1: Semantic parsing algorithm
input : a sentence in the question
output: a list of VCF statements

1 root = original sentence;
2 Stack = Empty;
3 VCF Stack = Empty;
4 Stack.push(root);
5 while Stack is not Empty do
6 current node = Stack.pop();
7 templates = get valid templates(current node);
8 template = choose template(templates);
9 current node.VCF template = get VCF template(template);

10 VCF Stack.push(current node);
11 nodes = get child nodes(template,current node);
12 for node in nodes do
13 current node.child nodes.add(node);
14 if type(node) != LEAF then
15 Stack.push(node);
16 end
17 end
18 end
19 while VCF Stack is not Empty do
20 current node = VCF Stack.pop();
21 current node.VCF=get VCF from template and child node();
22 end
23 return root.V CF

Figure 2 illustrates a semantic parsing tree
example, in which each node is associated
with one of the five basic types. Accord-
ing to this semantic parsing tree, we compute
the resulting VCF statements from bottom to
up recursively. For instance, the node “125
percent/NOUN” is converted into “NumberPer-
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Figure 1: The architecture of AiFu

Figure 2: Semantic parsing tree: a case study

cent(125)”, while the node “What is x per-
cent of 75/PRED” is converted into “NumberPer-
cent(x), Of(75,x,rs a), Be(rs b,rs a), What(rs b)”.
Finally, the root node, i.e., the original sen-
tence, is converted into “(NumberPercent(x),
Of(75,x,rs a), Be(rs b,rs a), What(rs b)) :- (Num-
berPercent(125), Of(x,125,rs c), Be(rs c,150))”.

2.3 Encoder
The encoder further converts statements in VCF
to formulas that can be accepted by Z3. Again,
we use a rule based template approach for this
purpose. There are two types of encoding tem-
plates. One is used to unify all different kinds of
concepts/operators in VCF to a set of predefined
concepts/operators that are accepted by Z3. For
instance, a VCF statement “add(3,5,x)” is normal-
ized as “Equal(3+5,x)”. While the operator “add”
is not a Z3 acceptable one, “Equal” and “+” are.
Another type of template is to unify new entities
that are created by VCF. For instance, the sentence
“x is an integer” is converted to VCF statements
“Be(rs a,x),Integer(rs a)” in the translator, which
is further encoded as “Integer(x)” in the encoder
by unifying the two entities “x” and “rs a”. At first
glance, it seems tedious to introduce extra entities
in the translator. However, this is exactly the rea-
son why we need an intermediate representation
language VCF because machines cannot directly

understand what “x is an integer” really means.
By using the encoding templates, the VCF

statements obtained in Figure 2 is converted into
“Var: x:Real, Equations: x*125% = 150, Tar-
get: x%*75”, which can be directly sent to the Z3
solver.

A large portion of SAT math questions can be
done in this way, thus are suitable to use Z3 as the
solver. Nevertheless, for some mathematical con-
cepts such as progression, set, list and odd/even
numbers, we need to make extra effort to formal-
ize them in the modulo theory linear arithmetic.
For instance, Odd(x) (“x is an odd number”) can
be converted into Equation(x%2 = 1). While the
former cannot be directly encoded in linear arith-
metic, the latter can.

2.4 Z3 Solver

Similar to some previous approaches (Hopkins
et al., 2017), we also call the Z3 solver1 as our
reasoning engine. Z3 is a widely used Satisfia-
bility Modulo Theories (SMT) solver, for solv-
ing problems that are represented in classical logic
augmented with modulo theories, e.g., linear arith-
metic.

However, Z3 has inherited difficulties on solv-
ing nonlinear equations, e.g., 3

√
x − 7 = 20. In

1https://github.com/Z3Prover/z3
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this case, we use SymPy 2 (Meurer et al., 2017),
a Python library for symbolic mathematics, as the
backup.

2.5 More on Geometry and Open Categories

For answering geometry questions, one has to un-
derstand diagrams. For this purpose, we first
use the Optical Character Recognition (OCR)
tool pytesseract3 to obtain character information.
Then, we follow the combined text and diagram
understanding approach GeoS (Seo et al., 2015).

Understanding open-vocabulary algebra ques-
tions is a critical challenge. At first glance, it
seems that the SAT open-vocabulary algebra sub-
dataset is quite similar to Math23k (Wang et al.,
2017). Hence, we attempted to use a Seq2Seq ap-
proach (Wang et al., 2017) that transforms math
questions directly to their corresponding mathe-
matical meanings. However, this attempt was not
successful, mainly because of the following two
reasons. First, questions in Math23k are much
simpler. Second, Math23k is much larger in terms
of volume.

Hence, we shifted back to a rule-based ap-
proach. We first use SVM to classify the type
of questions. Based on which, regular expres-
sions are used to transform questions in natural
languages to statements in VCF, similar to that
for the closed category described above. It turns
out that its performance is slightly better than the
Seq2Seq approach, yet still far from satisfactory.

2.6 Sub-symbolic System

We call the framework (see Figure 1) described
above the “symbolic system” as it mainly uses a
symbolic approach. However, some math ques-
tions remain unsolved. Hence, we also implement
a guess system as a complementary counterpart.
A simple guess system would be just a random
guesser. Nevertheless, in AiFu, we use a neural-
network based sub-symbolic approach, called the
“sub-symbolic system” instead based on sentence
embedding.

We treat the math question answering problem
as a classification problem. We combine the ques-
tion as well as a candidate choice into one sen-
tence, and use a sentence embedding approach In-
ferSent (Conneau et al., 2017) to embed it into a
vector of 4096 dimensions. Then, we construct

2https://www.sympy.org/en/index.html
3https://pypi.org/project/pytesseract/

a simple four-layer fully-connected feed-forward
neural network, in which the input is the 4096-
dimension sentence embedding, the output is the 5
classes of answers and the two hidden layers both
contain 1024 nodes. Finally, we train the network
with the training dataset provided by the organizer.

3 Results

Table 2 reports the overall final results of AiFu
on the test dataset. “Symb” is the symbolic sys-
tem described from Sections 2.2 to 2.5, “Sub-S”
is the sub-symbolic system described in Section
2.6, and “Integ” is the integrated system AiFu
that combines them both by answering those ques-
tions not answered by the symbolic system with
the sub-symbolic system. While “Acc” refers to
the standard accuracy, “Pena Acc” refers to the pe-
nalized accuracy by deducting 0.25 points each for
a wrong answer.

All in all, AiFu achieves an overall accuracy
of 45% as well as an overall penalized accuracy
of 36%. In particular, on the closed-vocabulary
algebra category, it achieves a relatively high ac-
curacy 70% (66% for penalized accuracy in con-
trast). The symbolic system plays a more criti-
cal role as it alone achieves 63% on answering
closed-vocabulary algebra questions. More impor-
tantly, the symbolic system has a very high preci-
sion of 96%, thus has almost no penalization on all
categories. In addition, unlike the sub-symbolic
system, the symbolic system is fully explainable.
However, it can be observed that all of these sys-
tems still perform poor on the Geometry and the
open categories, especially when measured by pe-
nalized accuracy.

Table 3 illustrates the semantic parsing accuracy
rate on closed-vocabulary algebra questions. It can
be observed that, on the training and development
datasets, we can achieve a relatively high accuracy
of 84%. Nevertheless, it drops down to 71% on the
test dataset. This is mainly because of the gener-
alizability issue of templates.

In order to further analyze the genrealizability
issue of templates, we consider the effects on the
number of templates. Figure 3 shows how the
template number affects the semantic parsing ac-
curacy. It can be observed that, on the training
dataset, the accuracy rates rapidly goes up to 50
% by the first 400 templates, then reaches 70% by
900 templates. Then, it slowly climbs up to 80%
with 500 templates more. However, the growth
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Version Acc
(overall)

Acc
(closed)

Acc
(geo)

Acc
(open)

Pena
Acc
(overall)

Pena
Acc
(closed)

Pena
Acc
(geo)

Pena
Acc
(open)

Symb 0.29 0.63 0.08 0.03 0.29 0.62 0.07 0.03
Sub-S 0.23 0.22 0.20 0.25 0.11 0.10 0.09 0.14
Integ 0.45 0.70 0.26 0.26 0.36 0.66 0.14 0.16

Table 2: Overall Results

Dataset Closed
Training 84% (711/846)

Development 84% (187/222)
Test 71% (326/459)

Table 3: Semantic parsing accuracy

rate drops down dramatically afterwards, making
it very difficult to improve. The main reason is that
SAT math questions have many long-tail questions
that cannot be covered by ordinary templates.
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Figure 3: Effects on the number of templates

There are some questions that can be correctly
parsed by our translator and encoder but failed to
be solved by Z3. Among all, nearly 12% (100
out of 846) belong to this case in the training
dataset. We further analyze their features. Among
them, 49% need to use new math concepts, e.g.,
prime number, that cannot be represented in Z3.
Around 19% of the questions are non-linear equa-
tions, which are very difficult for Z3. Finally, there
are 9% of the questions need to define new ob-
jects, and the rest 23% are other kinds of tricky
questions.

Error Analysis Training
Non-linear question 19%

Contain math concept 49%
Contain definition 9%

Other tricky question 23%

Table 4: Questions that cannot be solved by Z3

4 Conclusion

In this paper, we presents AiFu, a system that
has won the first place in the SemEval-19 “Math
Question Answering” competition. AiFu is a
combined system that enhances a symbolic sys-
tem with a sub-symbolic guesser. In AiFu, the
symbolic system plays the most vital role, which
itself can achieve a relatively high accuracy with
many merits on closed-vocabulary algebra ques-
tions. Many state-of-the-art approaches are used
and integrated in AiFu. Some new techniques
are proposed including our new internal represen-
tation language VCF and our template structures.

For future work, the most important task is to
improve the translator, which is the bottleneck, es-
pecially on geometry and open-vocabulary alge-
bra questions. We believe that new foundations
are needed, possibly requiring a deep integration
of symbolic and sub-symbolic approaches.
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