
Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 823–828
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

823

Zeyad at SemEval-2019 Task 6: That’s Offensive! An All-Out Search For
An Ensemble To Identify And Categorize Offense in Tweets

Zeyad El-Zanaty
Faculty of Engineering
Alexandria University

zeyadzanaty@gmail.com

Abstract

The objective of this paper is to provide a
description for a classification system built
for SemEval-2019 Task 6: OffensEval. This
system classifies a tweet as either offensive
or not offensive (Sub-task A) and further
classifies offensive tweets into categories
(Sub-tasks B - C). The system consists of
two phases; a brute-force grid search to find
the best learners amongst a given set and an
ensemble of a subset of these best learners.
The system achieved an F1-score of 0.728,
ranking in subtask A, an F1-score score of
0.616 in subtask B and an F1-score of 0.509
in subtask C.

1 Introduction

In OffensEval we break down offensive content
into three sub-tasks taking the type and target of
offenses into account. Sub-task A - Offensive lan-
guage identification; In this sub-task we are inter-
ested in the identification of offensive posts and
posts containing any form of (untargeted) profan-
ity. In this sub-task there are 2 categories in which
the tweet could be classified Not Offensive - This
post does not contain offense or profanity. Non-
offensive posts do not include any form of offense
or profanity. Sub-task B - Automatic categoriza-
tion of offense types; In this sub-task we are inter-
ested in categorizing offenses. Tweets are labeled
from one of the following categories Targeted In-
sult - A post containing an insult or a threat to an
individual, group, or others; Untargeted - A post
containing non-targeted profanity and swearing.
Posts containing general profanity are not targeted
but they contain non-acceptable language. On the
other hand, insults and threats are targeted at an
individual or group. Sub-task C - Offense target
identification. Finally, in sub-task C we are inter-
ested in the target of offenses. Only posts which

are either insults or threats are included in this sub-
task. The three categories included in sub-task C
are the following: Individual - The target of the
offensive post is an individual: a famous person,
named individual or an unnamed person interact-
ing in the conversation. Group - The target of the
offensive post is a group of people considered as
a unity due to the same ethnicity, gender or sexual
orientation, political affiliation, religious belief, or
something else. Other The target of the offen-
sive post does not belong to any of the previous
two categories (e.g. an organization, a situation,
an event, or an issue).(Zampieri et al., 2019b)

To work with such complicated tasks our ap-
proach is an exhaustive one. We try combinations
of many techniques in pre-processing, feature
extraction and classification while tuning their
hyper-parameters to find the best models with the
leading F1-scores. With the gained information an
ensemble of the top three models is formed to get
the optimum result. Along side to this approach
we try a deep-learning method with a simple 1D
- CNN consisting of 3 convolutional layers and a
softmax layer just to compare results.

2 Related Work

Offensive language on social media hardly
remains unnoticed. Contents involving hateful
messages vary from hate speech to group-based
racism and could target anyone irrespective of
their status, identity, location and so forth. Even
when it is not materialized into a hate-motivated
crime, the damage is done victims are being
labeled, marginalised and exposed to negative
stereotyping. The overall consequences of online
hate can be the dehumanisation of individuals
or groups of individuals. The need for proper
strategies to tackle hate speech on social media



824

is unquestionable. The core focus of the thesis is
not to find a solution to the challenge, but rather
to identify central problems that have contributed
to the formation of the existing reality. To unrave
the contributing factors, a holistic analysis of both
international human rights principles regarding
hate speech and the practical application of those
standards is necessary.(Schofield and Davidson,
2017)

There have been many studies and publication
on the topic of offensive language and hate
speech over the last few years. Examples on such
studies include (Davidson et al., 2017), (Malmasi
and Zampieri, 2017), (ElSherief et al., 2018),
(Gambäck and Sikdar, 2017), (Zhang et al.,
2018). Also there have been challenges on how to
distinguish profanity from hate-speech presented
by (Malmasi and Zampieri, 2018).

3 Methodology and Data

The used dataset in this assignment is the one
provided in SemEval-2019 task 6. The dataset has
been collected from Twitter. It was retrieved by
searching offensive terms that could be present
in a tweet. It consists of 14,100 tweets in total.
It was annotated using crowdsourcing. The gold
labels were assigned taking the agreement of three
annotators into consideration. No correction has
been carried out on the crowdsourcing annota-
tions. The dataset was presented in two phases;
Training data: already labeled tweets used to train
the classifiers. Each tweet was provided with a
binary classification label and an index. Testing
data: unlabeled tweets to test the classifiers
against. Zampieri et al. (2019a).

The system is a combination of three essential
layers. First, pre-processing which is a necessary
step in NLP as textual data could and most likely
is not clean, thus will affect further stages and
create an incoherent model. Second, feature
extraction or vectorization, which translates
words to a number or a series of numbers with
different weights to represent this word. Finally,
classification, features extracted from the previous
step is fed into a learner and a model is created
that could classify tweets.

For our approach we implemented a heap

of pre-processors, vectorizers and classifiers and
with the help of brute-froce search ranked all the
resulting models according to their F1-scores. All
implemented techniques are available in Table 1.
For the implementation see: github.com/
zeyadzanaty/offenseval

Phase Implemented Techniques

Pre-processing
Stopwords Removal

Lemmatization - Stemming

Feature
Extraction

TFIDF - Count - Word
Embedding

Classification
KNN - Naive Bayes - Decision
Trees - SVM -Random Forest
Logistic Regression - MLP

Table 1: Multiple techniques implemented in our
system.

3.1 Pre-processing

A tweet contains many unwanted data that would
take extra computational power and decrease
the accuracy of the model. So, noise removal
and some normalization techniques must be
applied to the corpus in-order to generate more
consistent models. Stopword Removal is a noise
removal method by filtering words that dont
have significance in the context of the sentence,
without them the semantics of the tweet wont
be affected. Lemmatization is the process of
getting the linguistic root of a word. First, words
are part-of-speech tagged , then converted to
their roots. Stemming is the process of stripping
a word of it’s prefixes and suffixes using the
porter-stemmer algorithm (Porter, 1980).

For this step, a list of all combinations of
pre-processing techniques is used. For example
it would look something like: [(Stopwords Re-
moval), (Stowords Removal, Lemmatization),
(Stopwords Removal, Stemming), (Lemmatiza-
tion), etc..]

3.2 Feature Extraction

Now that we’ve got our clean, almost noise-free
textual data, we cant simply feed a classifica-
tion model a bunch of text words, most models
only work with numerical data. This is where
we convert words to numerical features using

github.com/zeyadzanaty/offenseval
github.com/zeyadzanaty/offenseval


825

one the methods mentioned below to create our
classification-ready data.
We use three word embedding models of embed-
ding dimension 100 (which gave adequate results
after experimenting with other dimensions) along
side to the standard TFIDF/Count models.

• Word2Vec model trained on our
dataset.(Mikolov et al., 2013)

• fastText model trained on our dataset.(Joulin
et al., 2016)

• Pre-trained GloVe model trained on 2 Billion
tweets - 27 Billion tokens - 1.2 million vo-
cabulary.(Pennington et al., 2014)

All three models mentioned are zero-padded
with the maximum length of a tweet present in
the dataset to resolve the uneven dimensionality
issue. A list of all techniques is initialized for
later usage in the search for the best model.

3.3 Classification and Tuning
This is where all the previous work comes to-
gether for the final phase of the system. Seven
models where chosen and tuned using sci-kit
learns (Pedregosa et al., 2011) GridSearchCV,
which does a cross validation search on a list
of hyper-parameters for a given model. The
parameters grids that were tested are available in
Table 2.

Model Parameters Grid
KNN n neighbours: [1, 3, 5, 7]

Naive Bayes fit prior: [True, False]

SVM
C: [0.1,10,100]

kernel: [rbf, poly]

Decision Trees criterion: [gini, entropy]

Random Forest n estimators: [10 - 200]

Logistic
Regression

penalty : [l2]
solver: [sag, lbfgs, newton]

MLP
activation:[tanh, relu]

solver: [sgd,adam, lbfgs]

Table 2: Classification models and their corresponding
parameters to tune.

Again, a list of classifiers and their parameters
grids is initialized to tune them with a 3-fold cross
validation.

3.4 All-Out Search

This is the body of all the work. We try every
possible combination of pre-processing, vectoriza-
tion and classification to ensure the output has the
best possible F1-score for the given subtask. We
start by cleaning the data using a certain combina-
tion of pre-processors, then extracting features us-
ing one of the vectorizers and finally to complete
the pipeline, tune a classifier’s hyper-parameters
on the resulting data-matrix. And repeat for the
next combination.

1: procedure SEARCH(preprocessors,
vectorizers, classifiers)

2: models← {}
3: for prp ∈ preprocessors do
4: clean-data(prp)
5: for vec ∈ vectorizers do
6: vectorize-data(vec)
7: for clf ∈ classifiers do
8: models[clf ]← tune(clf)

9: sort(models)

The resulting set ‘models‘ is a set of each classi-
fier and a list of parameters and their correspond-
ing preprocessors, vectroizers and F1-scores. The
results could be plotted to help visualize the per-
formance of each model seen in Figure 1, which

Figure 1: F1-scores of logistic regression model on
subtask A, each bar is a model with it’s own
pre-processing, vectorizer and parameters.

shows the top 3 models for the logistic regres-
sion classifier. Each 3 bars represent the hyper-
parameters combination and the top 3 combina-
tions of pre-processing and vectorization. The best
F1-score (0.683) came from a pre-processing of
stopwords removal followed by lemmatization, a
count vectroizer and hyper-parameters [penalty:
l2, solver: sag]. Following this search, now that



826

Subtask Phase 1st 2nd 3rd

Pre-processing
Stopwords Removal
& Lemmatization

Stopwords Removal
& Stemming

Lemmatization

A Vectorization Count Count Count
Classification Logistic Regression Naive Bayes Random Forest

Pre-processing Lemmatization Lemmatization
Stopwords-
Removal

B Vectorization TFIDF TFIDF
GloVe-
Embeddings

Classifiaction Naive Bayes Random Forest MLP

Pre-processing Lemmatization Stopwords Removal Stemming
C Vectorization Count Count Count

Classification Random Forest Logistic Regression Naive Bayes

Table 3: Top 3 models for each subtask, these 3 models will form an ensemble to enhance the performance.

we have the scores of each model, we can model
an ensemble of the top 3 models to give us a bet-
ter overview of the data available in Table 3. And
just to add an extra layer we can re-tune the classi-
fier parameters in case of any error that could have
appeared in the previous step.

4 Results

We submitted with a couple of models, for subtask
A, an ensemble of the three top models mentioned
in Table 3, the Random Forest model and a 1-D
CNN. The ensemble did its best in subtask A but
the Random Forest (RF) model came a very close
second. Results can be viewed in Table 4, and con-
fusion matrix Figure 2.

System F1 (macro) Accuracy
All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
Ensemble 0.7289 0.8151
Random Forest 0.7143 0.8128
1D-CNN 0.5506 0.6977

Table 4: Results for Sub-task A. The ensemble
approach gave the best results.

As for subtask B, the ensemble submission un-
fortunately failed, but it didn’t look good anyway.
The best model was as simple Naive Bayes (NB)-
TFIDF model which got a very good F1-score of
0.887. Results can be viewed in Table 5, and con-
fusion matrix Figure 3.

System F1 (macro) Accuracy
All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125
1D-CNN 0.4436 0.5542
Naive Bayes 0.6161 0.8542

Table 5: Results for Sub-task B. The best performer
was a simple TFIDF - Naive Bayes model.

Finally, for subtask C, we chose to let go of
the CNN model as it didn’t get an acceptable re-
sult, and went for the ensemble, which got the
best accuracy but came second for F1-scores and
the RF model which also got a good accuracy but
a poor F1-score, and the best model was a lo-
gistic regression-count model with an F1-score of
0.5093. Results can be viewed in Table 6, and con-
fusion matrix Figure 4.

System F1 (macro) Accuracy
All GRP baseline 0.1787 0.3662
All IND baseline 0.2130 0.4695
All OTH baseline 0.0941 0.1643
Ensemble 0.4973 0.6479
Random Forest 0.4763 0.6432
Logistic Regression 0.5093 0.6056

Table 6: Results for Sub-task C. The ensemble got the
best accuracy but, LR got a better F1-score.

Looking at these results, we hypothesize that
the systems performance can be improved by com-



827

bining all word embedding features instead of us-
ing them individually. It was also remarkable
that the for most subtasks a simple Naive Bayes
- TFIDF model came close to being the best
amongst all others. We also believe better results
can be achieved if there was the dataset was more
balanced and having more offensive tweets, and if
we had sufficient time to perform grammar check-
ing on the tokens and other operations that can
reduce noise. The problem of out-of-vocabulary
(OOV) words which we unfortunately didn’t at-
tempt to solve, could be later be solved by using
a character-level embedding model rather than a
word embedding one.

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

593 27

132 108

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 2: Sub-task A, Ensemble of LR-NB-RF

TIN UN
T

Predicted label

TIN

UNT

Tr
ue

 la
be

l

197 16

19 8

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 3: Sub-task B, Naive Bayes - TFIDF -
Lemmatization

GR
P

IN
D

OT
H

Predicted label

GRP

IND

OTH

Tr
ue

 la
be

l

47 25 6

18 76 6

16 13 6

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4: Sub-task C, Logistic Regression - Count -
Stopwords Removal

5 Conclusion

This paper describes our offensive tweets identi-
fication and categorization system that was built
in the framework of SemEval-2019 Task 6. We
used a brute-force search technique to find the
best model that could be generated from a list of
prepocessing techniques, feature extraction mod-
els and classifiers and got an F1-sore of 0.728
in subtask A, 0.6161 in subtask B and 0.5093
in subtask C. In future work, we aim to focus
more on word embedding features by concatenat-
ing all 3 word vector models and experiment with
character-level/sentence-level models.

References
Thomas Davidson, Dana Warmsley, Michael Macy,

and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of ICWSM.

Mai ElSherief, Vivek Kulkarni, Dana Nguyen,
William Yang Wang, and Elizabeth Belding. 2018.
Hate Lingo: A Target-based Linguistic Analysis
of Hate Speech in Social Media. arXiv preprint
arXiv:1804.04257.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
2016. Fasttext.zip: Compressing text classification
models. arXiv preprint arXiv:1612.03651.



828

Shervin Malmasi and Marcos Zampieri. 2017. Detect-
ing Hate Speech in Social Media. In Proceedings
of the International Conference Recent Advances in
Natural Language Processing (RANLP), pages 467–
472.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1–16.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In In EMNLP.

Martin F Porter. 1980. An algorithm for suffix strip-
ping. Program, 14(3):130–137.

Alexandra Schofield and Thomas Davidson. 2017.
Identifying Hate Speech in Social Media. XRDS:
Crossroads, The ACM Magazine for Students,
24(2):56–59.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
Lecture Notes in Computer Science. Springer Ver-
lag.

http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf

