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Abstract

This paper proposes a system for OffensEval
(SemEval 2019 Task 6), which calls for a sys-
tem to classify offensive language into several
categories. Our system is a text based CNN,
which learns only from the provided training
data. Our system achieves 80 - 90% accu-
racy for the binary classification problems (of-
fensive vs not offensive and targeted vs untar-
geted) and 63% accuracy for trinary classifica-
tion (group vs individual vs other).

1 Introduction

Background. Social media (e.g. Twitter, Face-
book) is widely used today. For example, 68% of
all Americans report owning a Facebook account
in 2018 (Smith and Anderson, 2018), while 71%
of Americans (within the ages of 18-24) report us-
ing Twitter. Online gaming is a second popular
use of the internet, reaching upwards of 80 - 100
million monthly users depending on game (Goslin,
2018). These uses demonstrate the internet as a
way for humans to connect with others. How-
ever, connecting with others can carry a downside.
More than 1 in 3 young people have been cyber-
bullied online (cyb, 2018), this extends to around
half of teens. Besides cyberbullying, offensive
language, on a public forum, can cause users to
stay away from certain platforms. Because of this,
companies have increased their efforts to remove
offensive language from their platforms (Terdi-
man, 2018). With the large amount of traffic these
platforms see, a purely manual approach to detect-
ing/removing offensive language is impossible,
which means an automated approach is needed to
help. OffensEval (Zampieri et al., 2019b) provides
a community driven opportunity to build such sys-
tems. We approach this problem of classifying of-
fensive tweets with a CNN architecture trained on
the provided training dataset.

2 Proposed Approach

Our system is a variation of a Convolutional Neu-
ral Network (CNN), which was chosen since it has
seen success previously with classification tasks
CNN Infrastructure. We experimented with
two different Convolutional Neural Networks.
The first whose architecture is based on the CNN
originally proposed in (Kim, 2014) (CNN 1),
and the second a combination of multiple CNNs
(CNN 2). We further discuss each of these CNNs
and their comparison on the training data. The vi-
sual structure for CNN 1 and CNN 2 can be found
in figure 1 and figure 2 respectively.
Preprocessing. Both CNN 1 and CNN 2 begin
by preprocessing the text of the tweet. As noted
in section 3, URLs and user mentions are already
denoted as URL and USER. Basic cleaning of the
text is applied, includes removal of punctuation,
converting text to lowercase, and filtering of stop-
words via NLTK’s stopword list1. Finally, all sep-
arated words are tokenized via nltk’s tokenize()
function2.
Embedding Layer. CNN 1 and CNN 2 encode
the text of a tweet as a word embedding with di-
mension j. We experimented with several j arriv-
ing at j = 100. Word embeddings for Non-Out
of Vocabulary (OOV) words are obtained from
Glove (Pennington et al., 2014) which has been
trained on Twitter data3. Experiments were also
conducted with Glove common crawl data, but no
visible improvement was found. OOV words are
randomly initialized as a word embedding. The
embedding layer takes in i word embeddings of
length j, where the i word embeddings are com-
bined in the same sequential order as they appear
in the tweet. We choose i as the length of the

1nltk.org/api/nltk.corpus.html
2nltk.org/api/nltk.tokenize.html
3nlp.stanford.edu/projects/glove/
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Figure 1: CNN 1 ’s Architecture

longest tweet (i.e. number of words after prepro-
cessing). Any tweets less than i length are padded
with zero embeddings at the end. CNN 1 and
CNN 2 differ at this point and will be examined
separately.

CNN 1 Convolutional Layer. CNN 1 applies
three k × j convolutional windows to the embed-
ding layer: a 3 x j, a 4 x j, and a 5 x j window.
Applying each window to the embedding layer re-
sults in a (i−k+1)×1 output, where k = {3,4,5}
and corresponds to the length of the window. 100
filters of each window are applied to the embed-
ding layer resulting in 100 (i− k+1)× 1 outputs
for each k.

CNN 1 Max pooling/Merge Layer A max
pooling of size (i − k + 1) × 1 is applied to each
separate filter output from the convolutional layer.
The resulting outputs from all three max pooling
streams are merged together then flattened to a 300
neuron layer.

CNN 1 Dense Layer/Output Layer The flat-
tened layer is fed into a dense layer consisting of
128 neurons. ReLu is chosen as the activation
function. Finally, the output of the dense layer
is passed to the output layer of size n where n =

number of classes. The output layer uses a soft-
max function as activation.

CNN 2 Convolutional Layer. CNN 2 applies
three sets of three convolution windows to the em-
bedding layer, each window in the format k × j.
The first set of convolution windows are k =
[2, 3, 4], the second are k = [3, 4, 5], and third are
k = [4, 5, 6]. Similar to CNN 1 , applying these
filters results in a (i− k + 1)× 1 output, and 100
filters exist for each k for each set of windows.

CNN 2 Max pooling/Merge Layer. Max pool-
ing, in this instance, behaves similarly to CNN 1 .
However, instead of merging all the pooled layers,
only those in the same set are merged. This results
in three separate flattened 300 neuron layers.

CNN 2 Separate Dense layers The three sepa-
rate merged layers are fed through two dense lay-
ers consisting of 128 neurons each. ReLu activa-
tion function is used for all dense layers. Each
merged layer is fed to their own respective dense
layers. The second dense layers are finally merged
together.

CNN 2 Final Dense/Output Layers The
merged layer is fed through two more 128 dense
layers with ReLu activation. Finally, the result is
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Figure 2: CNN 2 ’s Architecture

fed to the output layer of size n with softmax acti-
vation.
Hyperparameters/Training We experimented
with different epochs and batch sizes and ended
up finding epochs=30 and batch size = 50 worked
best for our models. The only data trained on
was the training data provided. More on this data
in section 3. The system was implemented with
Keras4 and Tensorflow as the backend.

3 Dataset

Training Set. The data collection methods used
to compile the dataset provided in OffensEval is
described in Zampieri et al. (2019a). The training
data set provided consists of 13,240 tweets. Each
tweet, consists of up to three classifications, which
correspond to subtasks further described in section
4. The classifications are as follows:

i. OFF - This post contains offensive language
or a targeted (veiled or direct) offense

ii. NOT - This post does not contain offense or
profanity.

4https://keras.io/

iii. TIN - A post containing an insult or threat to
an individual, a group, or others

iv. UNT - A post containing non-targeted profan-
ity and swearing.

v. IND - The target of the offensive post is an in-
dividual: a famous person, a named individual
or an unnamed person interacting in the con-
versation.

vi. GRP - The target of the offensive post is a
group of people considered as a unity due to
the same ethnicity, gender or sexual orienta-
tion, political affiliation, religious belief, or
something else.

vii. OTH - The target of the offensive post does
not belong to any of the previous two cate-
gories (e.g., an organization, a situation, an
event, or an issue)

A tweet which is classified as OFF, can be further
classified into TIN or UNT. If classified as TIN,
the tweet can be further classified into IND, GRP,
or OTH. A breakdown of the frequency of each
class label can be found in table 1.



707

OFF NOT
4400 8840

TIN UNT
3876 524

IND GRP OTH
2407 1074 395

Table 1: A breakdown of frequency of labels of tweets,
the classes underneath are further classifications of
classes above (e.g. a tweet labeled IND is also labeled
TIN and OFF)

Test Set. The test set provided follows the same
classification rules as training and consists of 860
tweets. The 860 tweets can be classified into OFF
or NOT, then 240 OFF tweets can be classified as
TIN or UNT, and finally 213 TIN tweets can be
classified as IND, GRP or OTH.

4 Subtasks

OffensEval divided the overall task of identify-
ing/classifying offensive language into three sub-
tasks, subtask A, B, and C.

Subtask A. Subtask A requires a system to clas-
sify tweets as either offensive (OFF) or not offen-
sive (NOT). An example of a tweet marked as OFF
(in provided training):

@USER you are a lying corrupt traitor!!! No-
body wants to hear anymore of your lies!!!.

An example of a tweet marked as NOT:
@USER Buy more icecream!!!.
A more expanded look at the training data can

be found in section 3.

Subtask A Results. As our system only trained
on the provided gold standard, this data set was
used to gauge the effectiveness of our two sys-
tems. Five fold cross validation was used for pre-
dicting training data. The results for subtask A
on training data can be found in table 2. CNN 1
and CNN 2 achieve similar results, an accuracy
of 0.7468 and 0.7555, and a macro F1 score of
0.7130 and 0.7114, respectively. The results for
our systems’ performance on OffensEval test data
subtask A can be found in table 3. As with the
training data, CNN 1 and CNN 2 perform simi-
larly on this task, with CNN 1 achieving 0.8 ac-
curacy and a macro F1 score of 0.73.

Subtask B. Subtask B requires further classifi-
cation of OFF tagged into two categories, targeted
(TIN) and untargeted (UNT). An example of un-
targeted tweet is:

System Acc. Pr. Re. F1
CNN 1 0.7469 0.7145 0.7117 0.7130
CNN 2 0.7555 0.7256 0.7036 0.7114

Table 2: Subtask A Training Data Results, Pr.=Macro
Precision, Re.=Macro Recall, F1=Macro F1 Score

System Acc. Pr. Re. F1
CNN 1 0.7988 0.7552 0.7175 0.7314
CNN 2 0.7767 0.7250 0.7379 0.7306

All NOT 0.7209 0.4189
All OFF 0.2790 0.2182

Table 3: Subtask A Test Results, Pr.=Macro Precision,
Re.=Macro Recall, F1=Macro F1 Score. All OFF, NOT
are baselines where that specific label was assigned to
all tweets.

@USER @USER My favourite part of this is
watching all the conservatives lose their minds as
usual. Once again the Democrats a re being mean
to us boo-hoo. LOL.

An example of targeted:
@USER You are a complete knob! It’s ppl like

you who are messing up this country. More details
on data in section 3.
Subtask B Results. The results for cross valida-
tion on subtask B’s training data are found in table
4. CNN 2 achieves a greater accuracy over CNN
1 on this subtask, 0.8723 compared to 0.8222, but
still achieves a smaller macro F1 score of 0.5673
compared to 0.5827. Subtask B test results for our
systems are found in table 5. Similar to training,
CNN 2 outperforms CNN 1 in accuracy, 0.8958
to 0.8750, but achieves a similar trend in macro F1
scores, 0.6511 and 0.6528.
Subtask C. Subtask C requires further classifi-
cation of those tweets tagged are targeted (TIN),
into three classes, Individual (IND), Group (GRP),
and Other (OTH). Examples:

IND tweet -@USER You are a complete knob!
It’s ppl like you who are messing up this country

GRP tweet - @USER Assuming liberals are
unarmed would be a grave mistake by the de-
plorables.

System Acc. Pr. Re. F1
CNN 1 0.8222 0.5815 0.5839 0.5827
CNN 2 0.8723 0.6442 0.5545 0.5673

Table 4: Subtask B Training Data Results, Pr.=Macro
Precision, Re.=Macro Recall, F1=Macro F1 Score
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System Acc. Pr. Re. F1
CNN 1 0.8750 0.6732 0.6385 0.6528
CNN 2 0.8958 0.7478 0.6179 0.6511
All TIN 0.8875 0.4702
All UNT 0.1125 0.1011

Table 5: Subtask B Test Results, Pr.=Macro Precision,
Re.=Macro Recall, F1=Macro F1 Score. All TIN, UNT
are baselines where that specific label was assigned to
all tweets.

System Acc. Pr. Re. F1
CNN 1 0.6925 0.5372 0.5224 0.5282
CNN 2 0.6772 0.5147 0.5136 0.5140

Table 6: Subtask C Training Data Results, Pr.=Macro
Precision, Re.=Macro Recall, F1=Macro F1 Score

OTH tweet - @USER Shooting in USA is so
common no one is talking about gun control any
more.

More details on subtask C data in section 3.

Subtask C Results. The results for subtask C’s
cross validation on training data can be found
in table 6. CNN 1 slightly outperforms CNN
2 in this task, achieving an accuracy of 0.6925
over 0.6772 and a macro F1 score of 0.5282 over
0.5140. Subtask C’s test data results can be found
in table 7. As subtask C is a three class prob-
lem (compared to the two class problem of A, B),
the accuracy and macro F1 scores are lower over-
all. As with training, CNN 1 slightly outperforms
CNN 2 in both accuracy, 0.6291 to 0.6197, and
macro F1 score, 0.5061 to 0.4939.

5 Discussion

Systems outperform single labels. On test data,
for all three subtasks, our system outperforms the
baseline, provided by organizers, for assigning a

System Acc. Pr. Re. F1
CNN 1 0.6291 0.5513 0.5148 0.5061
CNN 2 0.6197 0.5079 0.5014 0.4939
All GRP 0.3662 0.1787
All IND 0.4695 0.2130
All OTH 0.1643 0.0941

Table 7: Subtask C Test Results, Pr.=Macro Preci-
sion, Re.=Macro Recall, F1=Macro F1 Score. All GRP,
IND, OTH are baselines where that specific label was
assigned to all tweets.

NOT OFF

Key
NOT 559 61 620
OFF 112 128 240

System 860

Table 8: CNN 1 ’s Confusion matrix for subtask A

TIN UNT

Key
TIN 201 12 213
UNT 18 9 27

System 240

Table 9: CNN 1 ’s Confusion matrix for subtask B

single label for all tweets. Outperforming the best
baseline (labeling tweets with highest frequent la-
bel) in terms of F1 by 0.32 in subtask A, 0.18
in subtask B, and 0.29 in subtask C. Outperfor-
mances in accuracy are seen in all three subtasks
as well.

Results follow data distribution. The test con-
fusion matrices for the higher scoring system
(CNN 1), for subtask A, B, and C, can be found in
table 8, table 9, and table 10 respectively. Train-
ing data for OFF and NOT make up 67% and 33%
respectively. For test data, the percentages are
28% for OFF and 78% for NOT. As expected, our
system identifies better identifies NOT (559/620
tweets) compared to OFF (128/240 tweets). Sim-
ilar results occur for subtask B, TIN (201/213)
compared to UNT(9/27), and subtask C, GRP
(33/78) compared to (95/100) compared to (6/35).
These results all follow distribution of training
data, which might point to lack of training data for
poorer results for smaller classes since deep learn-
ing systems depend on a good amount of training
data.

Added complexity of CNN 2 adds little to no
improvement. Although CNN 2 shows greater
performance in accuracy on the training data for
subtasks A and B, the performance does not follow
through in the test data, as CNN 1 outperformed
CNN 2 in subtask A and C for accuracy and all

GRP IND OTH

Key
GRP 33 34 11 78
IND 3 95 2 100
OTH 12 17 6 35

System 213

Table 10: CNN 1 ’s Confusion matrix for subtask C
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three subtasks for macro F1 score. Although CNN
2 performs slightly worse, this may not be due to
the structure itself, CNN 2 is currently trained the
traditional way (updates all weights as once) but
it may be necessary for the branches to be trained
separately. This requires further testing in the fu-
ture.

6 Related Work

Offensive language detection and classification
has become increasingly relevant in recent years
with the rise of social media. Subsequently, re-
searchers have also begun to look at aggression,
cyberbullying, hate speech, and abusive language
identification.
Cyberbullying. Cyberbullying detection has
been approach by several teams. Dinakar et al.
(2011) show that binary classifiers for individual
labels outperforms multi-label classifiers. Xu
et al. (2012) demonstrate that social media is a
rich environment for studying cyberbulling with
NLP. Dadvar et al. (2013) show the effectiveness
of including context around a comment.
Abusive Language. Abusive language has also
seen increase in study. Nobata et al. (2016)
construct a machine learning algorithm and test
with different lexical features, outperforming at
the time state-of-the-art methods. Mubarak et al.
(2017) expand abusive language identification to
Arabic social media. Fišer et al. (2017) propose
a legal framework, dataset and anotation schema
for abusive online language in Slovene. Su et al.
(2017) propose a system which can not only de-
tect, but also rephrase abusive language in Chi-
nese. Waseem et al. (2017) propose breaking abu-
sive language identification into further subtasks.
Founta et al. (2018) leverage crowd sourcing to
produce a large (80,000) annotated data set of abu-
sive Twitter language.
Hate speech. Hate speech identification has
come to the forefront for research as it deals with
current hot button issues (e.g. racism, sexism).
Schmidt and Wiegand (2017) and Fortuna and
Nunes (2018) compile a surveys of current hate
speech detection.

Other teams have brought to question how we
view and handle hate speech. Ross et al. (2016)
show the difficulty of annotating hate speech
and propose handling classification as non-binary.
Malmasi and Zampieri (2017) establish lexical
baselines for hate speech detection by applying

supervised classification methods and Malmasi
and Zampieri (2018) show the problems which
can arise when distinguishing profanity from hate
speech. ElSherief et al. (2018) further look to un-
derstand hate speech by looking into the target of
hate speech (i.e. at a individual or more general
group).

Machine learning classifiers are leveraged in
this field as well. Kwok and Wang (2013) em-
ploy a machine learning classifier to identify racist
tweets. Burnap and Williams (2015) test a ma-
chine learning system on different n-gram fea-
tures to identify hate speech on Twitter. Tulkens
et al. (2016) use hate speech dictionaries along
with support vector machines to identify racism
on Dutch social media. Schofield and Davidson
(2017) demonstrate three standard methods for
producing features for text classification, targeting
specifically the problem of automatic hate speech
identification.

Subsequently, deep learning is seen in hate
speech detection as well. Djuric et al. (2015)
train and leverage comment embeddings to help
identify hate speech. Gambäck and Sikdar (2017)
show the effectiveness of convolutional neural
networks (CNN) when identifying hate speech.
Zhang et al. (2018) identify hate speech using a
convolution-GRU based deep neural network.

Offensive Language. Offensive language iden-
tification aims to broaden the scope of negative
language identification. Wiegand et al. (2018) pro-
posed and ran a GermEval task similar to OffensE-
val, which had participants classify offensive lan-
guage as offensive or other, then further classify
the offensive tagged language.

7 Conclusion/Future Work

We have proposed and tested two different CNN
architectures for identifying offensive language.
Future work would aim to improve the current
CNN design by testing different word windows
and training techniques. Furthermore, since deep
learning performs better with large amounts of
training data, increasing the training data, perhaps
even with silver standards if not gold, should help
further improve the system’s predictions.
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