
Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 662–667
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

662

JU ETCE 17 21 at SemEval-2019 Task 6: Efficient Machine Learning
and Neural Network Approaches for Identifying and Categorizing

Offensive Language in Tweets

Mainak Pal*, Preeti Mukherjee∗, Somnath Banerjee, Sudip Kumar Naskar
Jadavpur University, Kolkata, India

{mainak.pal08,preetimukherjee08,sb.cse.ju}@gmail.com
sudip.naskar@cse.jdvu.ac.in

Abstract

This paper describes our system submissions
as part of our participation (team name:
JU ETCE 17 21) in the SemEval 2019 shared
task 6: “OffensEval: Identifying and Catego-
rizing Offensive Language in Social Media”.
We participated in all the three sub-tasks: i)
Sub-task A: offensive language identification,
ii) Sub-task B: automatic categorization of of-
fense types, and iii) Sub-task C: offense target
identification. We employed machine learn-
ing as well as deep learning approaches for
the sub-tasks. We employed Convolutional
Neural Network (CNN) and Recursive Neu-
ral Network (RNN) Long Short-Term Memory
(LSTM) with pre-trained word embeddings.
We used both word2vec and Glove pre-trained
word embeddings. We obtained the best F1-
score using CNN based model for sub-task A,
LSTM based model for sub-task B and Lo-
gistic Regression based model for sub-task C.
Our best submissions achieved 0.7844, 0.5459
and 0.48 F1-scores for sub-task A, sub-task B
and sub-task C respectively.

1 Introduction

Today, very large amounts of information are
available in online documents. As part of the ef-
fort to better organize this information for users,
researchers have been actively investigating the
problem of automatic text categorization. Tweets
are short length pieces of text, usually writ-
ten in informal style that contain abbreviations,
misspellings and creative syntax (like emoticons,
hashtags etc). In this paper we show that our

∗These two authors have contributed equally

multi-view ensemble approach that leverages sim-
ple representations of texts may achieve good re-
sults in the task of message polarity classification.
We used different machine learning algorithm and
neural network approaches for all the tasks which
are explained in the subsequent sections. The pa-
per is organized as follows: Section 2 lists down
the related work and Section 3 describes our ap-
proach. Section 4 presents the experiments, results
on the development set and discussion about the
confusion matrix and Section 5 details about the
observation. Section 6 concludes the paper with
possible future work.

OffensEval@SemEval-2019 shared task de-
scription, data and results are described in the
overview paper (Zampieri et al., 2019b).

2 Related Work

Papers published in the last two years include
the surveys by (Schmidt and Wiegand, 2017)
and (Fortuna and Nunes, 2018), the paper by
(Davidson et al., 2017) presenting the Hate
Speech Detection dataset used in (Malmasi and
Zampieri, 2017) and a few other recent papers
such as (ElSherief et al., 2018; Gambäck and
Sikdar, 2017; Zhang et al., 2018).

A proposal of typology of abusive language
sub-tasks is presented in (Waseem et al., 2017).
For studies on languages other than English see
(Su et al., 2017) on Chinese and (Fišer et al.,
2017) on Slovene. Finally, for recent discussion
on identifying profanity vs. hate speech see
(Malmasi and Zampieri, 2018). This work high-



663

lighted the challenges of distinguishing between
profanity, and threatening language which may
not actually contain profane language.

In addition, we would also like to mention
the previous editions of related workshops such
as TA-COS1, Abusive Language Online2, and
TRAC3 and related shared tasks such as GermEval
(Wiegand et al., 2018) and TRAC (Kumar et al.,
2018).

3 Methodology and Data

3.1 Data Description
The organizers provided a dataset of 13,240 tweets
which were annotated with the following task-
specific categories.

• Sub-task A: Offensive language identifica-
tion.

1. Not Offensive (NOT): These posts do
not contain offense or profanity.

2. Offensive (OFF): These posts contain
offensive language or a targeted (veiled
or direct) offense.

• Sub-task B: Automatic categorization of of-
fense types.

1. Targeted Insult and Threats (TIN): A
post containing an insult or threat to an
individual, a group, or others (see cate-
gories in sub-task C).

2. Untargeted (UNT): A post containing
non-targeted profanity and swearing.

• Sub-task C: Offense target identification.

1. Individual (IND): The target of the of-
fensive post is an individual: a famous
person, a named individual or an un-
named person interacting in the conver-
sation.

2. Group (GRP): The target of the offen-
sive post is a group of people consid-
ered as a unity due to the same ethnic-
ity, gender or sexual orientation, politi-
cal affiliation, religious belief, or some-
thing else.

1http://ta-cos.org/
2https://sites.google.com/site/

abusivelanguageworkshop2017/
3https://sites.google.com/view/trac1/

home

3. Other (OTH): The target of the offensive
post does not belong to any of the pre-
vious two categories (e.g., an organiza-
tion, a situation, an event, or an issue).

Table 1: Statistics of the training dataset

NOT 8040

OFF

UNT 524

TIN
IND 2407

3876GRP 1074
OTH 395

TOTAL 12440

The data collection methods used to compile
the dataset used in OffensEval is described in
Zampieri et al. (2019a). Table 1 provides statis-
tics of the training dataset.

3.2 Preprocessing
Raw tweets scraped from twitter generally result
in a noisy dataset. This is due to the casual nature
of people’s usage of social media. Tweets have
certain special characteristics such as re-tweets,
emoticons, user mention, etc. which have to be
suitably extracted. Therefore, raw twitter data has
to be normalized to create a dataset which can
be easily learned by various classifiers. We ap-
plied an extensive number of pre-processing steps
to standardize the dataset and reduce its size. Ini-
tially, we performed basic pre-processing opera-
tions on tweets which are as follows:

1. Convert the tweets to lower case.

2. Selective removal of special twitter features
like URL, User mention, Hash-tags etc. (Cf.
Table 2)

3. Converting abbreviated negative english
words to common negative verbs.

4. Removing special characters and numbers.

5. Tokenization.

Table 2: Regex used for pre-processing

Twitter Feature Regex pattern
URL https?://[ˆ ]+ | www.[ˆ ]+
Mention @[A-Za-z0-9]+
Hashtags #[A-Za-z0-9]+

http://ta-cos.org/
https://sites.google.com/site/abusivelanguageworkshop2017/
https://sites.google.com/site/abusivelanguageworkshop2017/
https://sites.google.com/view/trac1/home
https://sites.google.com/view/trac1/home


664

3.3 Machine Learning

Most of the machine learning (ML) algorithms are
heavily reliant on hand crafted features designed
by experts. This makes ML algorithms less gen-
eralizable. So we did not use any language spe-
cific features. We used various Machine Learning
techniques to classify the tweets. When compar-
ing various machine learning algorithms, baseline
provides a point of reference to compare. While
developing the models, we employed TextBlob4 as
baseline. We compared the validation result with
TextBlob. Textblob is a python library for process-
ing textual data. Apart from useful tools such as
POS tagging, n-gram,etc. it has a built-in senti-
ment classification tool. We also tried a variation
for the fine-grained classification task where the
predicted output from task A was also added as
a feature to the TF-IDF and list specific features.
We validated our models using 15% of the train-
ing data. We built an ensemble (voting) classifier
with top 5 models for different types of vectoriz-
ers, number of features, n-grams, etc.

3.4 Convolutional Neural Network

Word embedding: We used Glove5 as the vector
representation of the words in tweets. The dimen-
sion of the embedding is 300. We fine-tuned the
word embedding during the network training.

Network Architecture: As shown in the Fig-
ure 1 embedding layer is used to provide word
embedding. We used 300 dimensional word vec-
tors for each words. We used 1D CNN on text
data represented in word vectors. Filter column
width is same as the data column width. It will
ensure that matrix will stride vertically only. The
padded data of the input text is of size 65x300 for
each sentences. Therefore, filter’s column width
will be 300. Height is similar to the concept of n-
gram. If the filter height is 2, the filter will stride
through the document computing the calculations
with all the bigrams; if the filter height is 3, it will
go through all the trigrams in the document, and
so on. The output height is measured by the fol-
lowing mathematical expression :

Output height = ((H − hf)/s) + 1

where, H: Input data height hf: Filter height s:
Stride size

4https://textblob.readthedocs.io/en/dev/
5https://nlp.stanford.edu/projects/glove/

Figure 1: Convolutional Neural Network

Global Max Pooling layer extracts the maxi-
mum value from each filter, and the output dimen-
sion is 1-dimensional vector with length as same
as the number of filters we applied. This can be
directly passed on to a dense layer without flatten-
ing.

We implemented the above with bi-gram, tri-
gram and four-gram filters. However, this is not
linearly stacked layers, but parallel layers. And
after convolutional layer and max-pooling layer, it
simply concatenated max pooled result from each
of bi-gram, tri-gram, and four-gram, then build
one output layer on top of them. We added one
fully connected hidden layer with dropout just be-
fore the output layer. Output layer has just one
output node with Sigmoid activation.

3.5 Recurrent Neural Networks

Long Short-Term Memory networks are an exten-
sion for RNN. We employed LSTM as RNN ar-
chitecture.

Word embedding: Here, we also used Glove
as the vector representation of the words in tweets.
The dimension of the embedding is 200. We fine-



665

tuned the word embedding during the network
training.

Network Architecture: The matrix contains
400,000 word vectors, each with a dimensionality
mentioned above. We imported two different data
structures, one was a Python list with the 400,000
words, and another was a 400, 000 × 200 dimen-
sional embedding matrix that holds all of the word
vector values. We defined the necessary hyper-
parameters and specified the two placeholders, one
for the inputs into the network, and one for the la-
bels. The most important part about defining these
placeholders was understanding each of their di-
mensionality. For both tasks, the output layer con-
tained nodes equal to the number of class labels( 2
for task A and B, 3 for task C ).

Figure 2: Vectorized tweets and corresponding la-
bels

Each row in the integerized input placeholder
represents the integerized representation of each
training example that we included in our batch.
Hidden state vector can be represented as :

ht = σ(wHht−1 + wXxt)

where,wH andwX are weight metrics, xt is a vec-
tor that encapsulates all the information of a spe-
cific word.

We also used LSTM network as a module in
RNN for better understanding of a sentence. All
the vectors are given as a sequence of vectors
for a bidirectional LSTM. The representation of
a tweet is the representation learned after pass-
ing the whole sequence of tokens through the biL-
STM. We defined a standard cross entropy loss
with a softmax layer put on top of the final pre-
diction values. For the optimizer, we used Adam
and the default learning rate of 0.001.

4 Results

This section presents the obtained results for the
three sub-tasks.

Figure 3: LSTM unit

4.1 Sub-task A:

We implemented all the three systems for this
sub-task. For Machine learning, we obtained
best results for Count-vectorizer with tri-gram
and 90,000 features and with Logistic Regression
Classifier. We achieved best results for CNN-
Glove with Macro-F1 0.7844 and overall Accu-
racy 0.8419. However, due to paucity of time, we
were unable to extract the output from our RNN
model in the stipulated time frame.

System F1 (macro) Accuracy
All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
ML model 0.7231 0.8105
CNN-glove 0.7844 0.8419

Table 3: Results for Sub-task A.

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

584 36

100 140

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 4: Confusion matrix of CNN-glove model
for Sub-task A



666

4.2 Sub-task B:
Our approach was similar to that in the previous
Sub-task. We changed the training set and la-
bels of the same appropriately, and got our results.
We used 2 class layers for training.We observed
that the model gives better validation accuracy
while fitted with cleaned data parsing with @user.
While training the RNN network, we used alterna-
tive targeted and non-targeted tweets from anno-
tated data. We obtained best results for RNN with
Macro-F1 0.54587543782 and overall Accuracy
0.804166666667. The Hyper-parameters of this
model are: Batchsize:24, LSTM Units:64, Epochs
Number:1,00,000, Glove embeddings:200D, Opti-
mizer:Adam. In Machine Learning, we used sev-
eral traditional techniques. Best validation accu-
racy was found for Logistic Regression as classi-
fier, countvectorizer - trigram - 50k feature.

System F1 (macro) Accuracy
All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125
ML model 0.5378 0.8917
RNN-LSTM 0.5459 0.8042

Table 4: Results for Sub-task B.

TIN UN
T

Predicted label

TIN

UNT

Tr
ue

 la
be

l

187 26

21 6

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5: Confusion matrix of RNN-LSTM model
for Sub-task B

4.3 Sub-task C:
This task was the most challenging among the
three tasks because of the small training data. The
training data contains only 3876 tweets and the
3 sub-classes are unevenly distributed. First of

all, since this was a ternary classification task, we
could only pursue a handful of machine learn-
ing algorithms and secondly for neural network
architectures, there is a paucity of huge dataset
to train the model properly. We used 10% of
training dataset for testing and validation pur-
poses, while the rest used for training. We con-
verted our text documents to a matrix of to-
ken counts (CountVectorizer), then transformed a
count matrix to a normalized tf-idf representation
(tf-idf transformer). After that, we trained sev-
eral classifiers from Scikit-Learn6 library. Now
among the various classifiers, we built an en-
semble (voting) classifier with top 5 models and
found the best accuracy result for Logistic Re-
gression. To make the vectorizer transformer-
classifier easier to work with, we used Pipeline
class in Scikit-Learn that behaves like a com-
pound classifier. For RNN, the same previous sys-
tem was used but with some alterations as change
in labels and change in iterative conditions for
output prediction as this was a ternary classifi-
cation task. We obtained best results for Ma-
chine Learning with Logistic Regression Classifier
with 0.480057590252,0.577464788732 in terms
of Macro-F1 and overall Accuracy respectively.

System F1 (macro) Accuracy
All GRP baseline 0.1787 0.3662
All IND baseline 0.2130 0.4695
All OTH baseline 0.0941 0.1643
RNN-LSTM 0.4580 0.5681
CNN-glove 0.4352 0.6056
ML Model 0.4801 0.5775

Table 5: Results for Sub-task C.

5 Observations

We noticed that both the F1(macro) and accuracy
are high, in Sub-task A. This is probably due to
relatively large size of training data. In sub-task
B, we have found that, though the accuracy is op-
timum, F1(macro) is surprisingly low. This is due
to imbalanced dataset. Many classes have fewer
samples to create robust models. This goes same
for the sub-task C .

6https://scikit-learn.org/stable/



667

GR
P

IN
D

OT
H

Predicted label

GRP

IND

OTH

Tr
ue

 la
be

l

37 34 7

12 80 8

11 18 6

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 6: Confusion matrix of ML model for Sub-
task C

6 Conclusions

In this paper, we have briefly described our sub-
missions to SemEval2019 Task 6 on Identifica-
tion and Categorization of Offensive Language on
Twitter data. Our systems ranked 21st out of 103
participants for Sub-task A, 50th out of 75 partic-
ipants for Sub-task B and 47th out of 66 partici-
pants for Sub-task C.Although our validation ac-
curacy was high, the F1-score primarily dropped
due to unequal distribution of opposite polarity
data.

We could have made the system work better by
training our model with additional tweets which
we could have annotated manually. We could have
also used Siamese Network to train our model,
which has been generally used for image data.

References
Thomas Davidson, Dana Warmsley, Michael Macy,

and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of ICWSM.

Mai ElSherief, Vivek Kulkarni, Dana Nguyen,
William Yang Wang, and Elizabeth Belding. 2018.
Hate Lingo: A Target-based Linguistic Analysis
of Hate Speech in Social Media. arXiv preprint
arXiv:1804.04257.

Darja Fišer, Tomaž Erjavec, and Nikola Ljubešić. 2017.
Legal Framework, Dataset and Annotation Schema
for Socially Unacceptable On-line Discourse Prac-
tices in Slovene. In Proceedings of the Workshop
Workshop on Abusive Language Online (ALW), Van-
couver, Canada.

Paula Fortuna and Sérgio Nunes. 2018. A Survey on
Automatic Detection of Hate Speech in Text. ACM
Computing Surveys (CSUR), 51(4):85.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bulling (TRAC), Santa Fe, USA.

Shervin Malmasi and Marcos Zampieri. 2017. Detect-
ing Hate Speech in Social Media. In Proceedings
of the International Conference Recent Advances in
Natural Language Processing (RANLP), pages 467–
472.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1–16.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection Using Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Workshop on Natural Language Process-
ing for Social Media. Association for Computational
Linguistics, pages 1–10, Valencia, Spain.

Huei-Po Su, Chen-Jie Huang, Hao-Tsung Chang, and
Chuan-Jie Lin. 2017. Rephrasing Profanity in Chi-
nese Text. In Proceedings of the Workshop Work-
shop on Abusive Language Online (ALW), Vancou-
ver, Canada.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse: A
Typology of Abusive Language Detection Subtasks.
In Proceedings of the First Workshop on Abusive
Langauge Online.

Michael Wiegand, Melanie Siegel, and Josef Rup-
penhofer. 2018. Overview of the GermEval 2018
Shared Task on the Identification of Offensive Lan-
guage. In Proceedings of GermEval.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
Lecture Notes in Computer Science. Springer Ver-
lag.


