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Abstract

This paper describes MITRE’s participation
in SemEval-2019 Task 5, HatEval: Multilin-
gual detection of hate speech against immi-
grants and women in Twitter. The techniques
explored range from simple bag-of-ngrams
classifiers to neural architectures with varied
attention mechanisms. We describe several
styles of transfer learning from auxiliary tasks,
including a novel method for adapting pre-
trained BERT models to Twitter data. Logis-
tic regression ties the systems together into an
ensemble submitted for evaluation. The result-
ing system was used to produce predictions for
all four HatEval subtasks, achieving the best
mean rank of all teams that participated in all
four conditions.

1 Introduction

The popularity of social media allows anyone to
post their thoughts and opinions for all to see.
While the vast majority of these communications
are benign, there are those who express hateful or
threatening messages online. The identification of
hate speech (Fortuna and Nunes, 2018; Schmidt
and Wiegand, 2017) on platforms like Twitter is
of particular interest for law enforcement and to
social media companies who wish to remove ac-
counts with offending content from their sites. Au-
tomating the identification of hate speech will al-
low platforms to flag and remove content much
more quickly and effectively.

In this effort we explored neural transfer learn-
ing techniques, including word embeddings and
fine-tuning of models trained with diverse auxil-
iary tasks. We built and compared models em-
ploying soft attention over sequences and multi-
headed self-attention. We also present a novel
task to aid in performing additional pre-training of
BERT (Devlin et al., 2018) for domain adaptation
to Twitter data.

2 Task, Data and Evaluation

HatEval was a shared task organized within
SemEval-2019 (Basile et al., 2019). The pri-
mary task was detection of hate speech in Twit-
ter, specifically against immigrants and women.
This multilingual shared task was organized into
two sub-tasks, each presented in both English and
Spanish, for a total of four sub-task evaluations.

Task A The first sub-task was simply to identify
tweets containing hate speech against immigrants
or women. The official metric used for this binary
classification task was macro-averaged F1 score,
in which the F1 scores are calculated for both the
positive hate speech and negative not hate speech
classes and then those two scores are averaged.

Task B The second sub-task involved the de-
tection of two specific aspects of hate speech:
whether it is targeted at an individual vs. a group
of people, and whether it expresses aggression on
the part of the author. In this annotation scheme,
there is a dependency between these two cate-
gories and the hate speech label used in Task A,
as tweets could only be labeled as positive for tar-
geting or aggression if they were positive for hate
speech. The official metric used for Task B was
Exact Match Ratio (EMR), which is the propor-
tion of tweets that are labeled correctly for all cat-
egories (hate speech, targeting, and aggression).
Another way to think of this is as a five-class
classification problem where the classes are (H=0,
T=0, A=0), (H=1, T=0, A=0), (H=1, T=0, A=1),
(H=1, T=1, A=0), (H=1, T=1, A=1). EMR on pre-
dicting the three classes separately is equivalent to
accuracy on this five-class classification.

Dataset Characteristics The English datasets
consisted of 9000 tweets for train, 1000 for dev,
and 3000 for test. The Spanish datasets were half
the size of the English, with 4500 tweets for train,
500 for dev, and 1500 for test.
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Cursory examination revealed drastic differ-
ences between the training and test sets, partic-
ularly in English. The pejorative term bitch ap-
peared in 12% of the training tweets vs. 48% of
the test tweets. The hashtags #BuildThatWall or
#BuildTheWall appeared at rates of 6% and 23%
in train and test, respectively. Likewise, #MAGA
was in over 12% of the test set tweets but in under
3% of the training set messages. Thus the English
test set appears to be dominated by a handful of
heavily represented phenomena.

Different annotation strategies appear to have
been used on the training and test sets as
well. While tweets mentioning #BuildThatWall or
#BuildTheWall were annotated as hate speech 98%
of the time in the training set, this number is 35%
on the test set. Similarly, tweets containing bitch
were labeled as hate speech 78% of the time in the
training set vs. 43% of the time in the test set.

The use of hashtags differs markedly between
languages. Hashtags are much more frequent in
the English training data than the Spanish training
data, with English tweets 2.6 times more likely to
contain at least one tag, and with tags occurring in
English at 4.1 times the rate in Spanish. In the En-
glish training data, the most frequent ten hashtags
were 23% of the overall total and tended towards
American political topics. In Spanish, the top ten
tags account for only 8% of the total, exhibiting a
much longer and sparser tail.

3 System Overview

For each task, we created an ensemble of systems,
each of which independently predicted the classes.
The component systems are described in the fol-
lowing eight sections, after which we describe the
procedure for building and testing the ensembles.
All component systems described below treated
Task B as a five-class prediction problem, and with
the exception of two BERT-based systems, were
trained to address Task A and Task B simultane-
ously.

Data and resources SemEval organizers pro-
vided training and development sets for English
and Spanish. Planning to build ensembles, we
shuffled and split out 10% of the training for cal-
ibrating models in the ensembles (calibration set
from here on). Components were trained using
the remaining 90% of the training sets provided,
with hyperparameter search and validation using
the full development sets or via cross-validation.

We did not use any additional supervised datasets.
The BiLSTM, Name Embedding, and Hash-

tag Prediction models incorporated pre-trained
word2vec (Mikolov et al., 2013) language-
specific embeddings that we trained on 1558 bil-
lion English and 444 million Spanish tweets col-
lected from 2011 to 2018. In both cases we ap-
plied word2phrase twice to identify phrases of
up to four words, and trained a skip-gram model
of size 256, using a context window of 10 words
and 15 negative samples per example.

For Task A, all of our component systems and
ensembles included a post-processing step to se-
lect the best threshold score for classifying hate
speech in order to achieve the maximum macro-
averaged F1 score on the development set.

3.1 BiLSTM with Attention

We trained several heavily regularized single-layer
Bidirectional LSTM (Hochreiter and Schmidhu-
ber, 1997) models to learn a tweet representa-
tion with soft attention (Bahdanau et al., 2014)
over a sequence of pre-trained token embeddings.
Hyperparameter experimentation with Spearmint
(Snoek et al., 2012) suggested that a shallow net-
work with attention outperformed deeper, stacked
networks and networks without attention. Our at-
tention layer learns to weight context-aware repre-
sentations of each timestep of the input.

We trained one architecture for the English
tasks and two architectures for Spanish, although
the second was ablated from our Task A ensem-
ble. The models were identical in structure and
differed only in hyperparameters. All models were
constructed with spatial dropout over a frozen em-
bedding layer, followed by an embedding trans-
form, one bi-directional LSTM layer with dropout,
an attention layer, and a fully-connected hidden
layer with dropout.

In each of these models, the NLP representation
was used as input to a small prediction network
of latent predictions and residual connections de-
scribed in Section 3.5.

3.2 Name embeddings

This model added a name embedding input to our
BiLSTM described above, in an effort to better
model the demographics of the individuals ad-
dressed within a tweet.

We trained our name vectors using the
word2vec objective. Each context was made up of
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multiple usernames a single Twitter user had em-
ployed during a multi-year longitudinal sample of
random tweets streamed from the platform. This
resulted in a vocabulary of approximately two mil-
lion name pieces, which includes common names
as well as alternate spellings using special charac-
ters, symbols, emoji, and other text entered in the
user name field.

We extracted all substrings of at least length 3
from each username mention in a tweet and in-
cluded any of them that were in our name embed-
ding vocabulary as input to our model. We applied
a learned transformation to each embedding and
created a weighted combination with an attention
layer. This was concatenated with a hidden repre-
sentation constructed with the BiLSTM architec-
ture described in Section 3.1. This concatenation
was the input to the prediction network described
in Section 3.5.

The Spanish name embedding was comprised
of dropout over frozen embeddings, a dense em-
bedding transform, and an attention layer. For En-
glish, only an attention layer over the frozen em-
beddings was used. The hyperparameters from our
best English model were used in the BiLSTM ar-
chitecture for both languages.

3.3 DeepMoji

The DeepMoji model developed by Felbo et al.
(2017) predicts the emoji removed from an
English-language tweet text. The authors train
their RNN model on 1274 million tweets for a
set of 64 emojis. Using varying degrees of fine-
tuning and newly initialized layers, they test their
distantly supervised models on several benchmark
datasets for detecting emotion, sentiment, and sar-
casm. The model’s best results used their chain-
thaw fine-tuning method, which iteratively un-
freezes and trains layers for the new objective. The
authors distribute their trained model for the emoji
prediction task.

We experimented with both chain-thaw training
and models that were frozen until the final layer of
abstraction in DeepMoji. The pre-trained model
has a vocabulary that omits many of the hashtags
and usernames that were important for our task.
Our best model used 0.75 dropout over the output
of a frozen DeepMoji model and three fully con-
nected layers of sizes 512, 256, and 128 before the
annotation constraint adapter. Chain thaw mod-
els performed poorly and were ablated from our

Task A submission. DeepMoji models are only
included in our English ensembles.

3.4 Hashtag prediction network
Following Zarrella and Marsh (2016), we imple-
mented a recurrent neural network classifier that
was pre-trained via an auxiliary masked hashtag
prediction task. We extracted 30 of the top hash-
tags found in the training data, with 15 selected
from both the hate speech positive and negative
classes. Then we searched for the fifteen near-
est neighbors of each tag via cosine similarity in
embedding space, using vectors described in Sec-
tion 3. After removing duplicates, this resulted in
136 English and 132 Spanish hashtags. We down-
loaded up to 1,000 recent tweets containing each
hashtag from Twitter’s public search API, result-
ing in 11,539 English tweets and 12,504 Spanish
tweets. Tweets were stripped of the target hash-
tag(s), and each corpus was divided into a training
and development set using a 90/10 split.

The sequence of vector representations of the
tokens in each tweet served as the input to a neu-
ral network with a 128 LSTM units followed by
a dense softmax layer over the possible candidate
hashtags. Both the word embeddings and the re-
current layer were tuned. These models correctly
predicted development set hashtags with 50.3%
accuracy on the English data and 56.6% accuracy
on the Spanish data.

The trained weights were extracted from this
network and used to initialize the five-way hate
speech classifier for Task B, described in Sec-
tion 2, which additionally saw as input the one-hot
representations of the 600 most frequent unigrams
and 300 most frequent bigrams in the training data,
each followed by a fully-connected dense layer.
The size of each fully connected layer and amount
of dropout were experimentally determined using
Spearmint (Snoek et al., 2012) to maximize per-
formance on the competition metrics on our de-
velopment set.

3.5 Annotation constraint adapter
Both Task A and Task B had annotation con-
straints based on latent variables. In Task A, hate
speech (H) was not marked as true unless the tweet
was directed at women (W) or immigrants (I). In
Task B, aggression (A) and individual targeting
(T) were not marked as true unless hate speech di-
rected at women or immigrants was present. Even
though W and I are not directly represented in our
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Figure 1: An annotation constraint adapter.

datasets, we believe they are latent variables that
can be discovered in the NLP representation. Fig-
ure 1 shows an adapter we placed at the end of
several systems to encourage the network to learn
these constraints. While it doesn’t enforce the con-
straints, it sets up a principled graphical model
that encourages the network to learn them. Of
course, nothing prevents the network from learn-
ing to model other things with this topology. Fair
comparisons to stacked dense layers with the same
number of parameters showed that the network
with this topology performed better.

The upside to the design of a network like this is
that the removal of the H switch might yield more
general-purpose A and T classifiers.

3.6 Pre-training BERT with Twitter data

Pre-trained language models such as BERT (De-
vlin et al., 2018) have been demonstrated to
achieve state of the art performance on a range of
language understanding tasks. BERT uses a trans-
former encoder model (Vaswani et al., 2017) and
pre-trains the model using two complementary ob-
jectives: masked language model, and next sen-
tence prediction. The pre-trained model may then
be fine-tuned on labeled data (in this case the Hat-
Eval dataset) to perform a downstream task.

For English, we used the BERT-Large model,
which has 24 layers, 1024 hidden layer size, and
16 self-attention heads. For Spanish, we used
the smaller multilingual BERT, with 12 layers,
768 hidden layer size, and 12 self-attention heads.
The English BERT is trained on Wikipedia and
BooksCorpus (Zhu et al., 2015), while the multi-
lingual model is trained on Wikipedia from multi-
ple languages. As the language in these sources is
likely to be quite different from the language com-
monly used on Twitter, we elected to perform ad-
ditional pre-training using a corpus of tweets col-
lected during the same time period as the HatEval
training dataset (October 2017 - September 2018).
All of the pre-training experiments described be-
low started from the TensorFlow model check-
points downloaded from (Google Research, 2018).

Since the tweets in our collection are not se-

quential, they cannot be used for the next sen-
tence prediction that BERT uses to learn sentence
relationships. We therefore began by running
20k steps of additional pre-training using only the
masked language model task.

none MLM descriptions names
En A 79.1 81.2 79.7 NA
En B 66.4 69.0 67.9 NA
Es A 80.7 81.9 83.3 82.7
Es B 74.6 75.0 76.2 74.4

Table 1: Scores achieved with pre-training schemes.
Due to time constraints, the name-based training was
only done on Spanish models.

Next, we hypothesized that replacing the next-
sentence prediction task with a task involving pre-
dicting some attribute of the author of the tweet
would provide the model with latent information
about the nature of tweets that would allow it to
discriminate between different classes of tweets
more accurately. We performed 20k additional
pre-training steps with the user description from
the author’s Twitter profile standing in for the sec-
ond sequence in the sentence prediction task. In
other words, we trained the network to determine
whether a given pair of (tweet text, author de-
scription text) were sampled from the same tweet.
Finally, we pre-trained a BERT model with the
screen name of the Twitter user as the secondary
prediction task.

Table 1 shows the validation scores for our
five-class model under our different pre-training
schemes: No additional, pre-training on masked
LM only, pre-training MLM + Twitter user
descriptions, pre-training MLM + Twitter user
screen names. Additional pre-training resulted
in increased validation scores on all four tasks,
and incorporating user descriptions in place of the
next sentence prediction task further resulted in in-
creased scores for both Spanish tasks.

3.7 Maximizing ensemble diversity
During development, we noticed some of the neu-
ral network models with high capacity had sig-
nificantly variance in prediction accuracy based
on training with different subsets of the training
data, hyperparameter settings or just differences
in parameter initialization. Such variance would
suggest using model bagging (Breiman, 1996) or
other form of variance reduction. However, given
the relatively long training times for some of the
neural network models, especially those based on
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σ|w| w feature
0.81 -2.57 bitch
0.30 -1.52 whore
0.29 -1.12 bitch
0.27 -0.97 women
0.26 0.53 URL
0.23 -1.37 hoe
0.23 -0.67 !
0.19 -0.91 her
0.19 0.72 immigrant
0.17 -0.88 #buildthatwall
0.17 0.34 //t.co/
0.15 0.74 [URL,URL]
0.15 -0.66 #BuildT
0.14 -0.77 she
0.14 -0.30 a
0.13 -0.61 woman
0.13 0.36 i
0.12 -0.63 Illegal
0.12 -0.62 immigrants
0.12 -0.40 this
0.12 -0.39 igrants
0.10 0.63 [not,all]
0.10 0.63 [all,men]

Table 2: Top LR word and character features.

BERT, using ensemble methods such as bagging
directly proved too cumbersome as part of the
model development workflow. Instead, we em-
ployed a form of negative correlation learning (Liu
and Yao, 1999) to train a small ensemble of neu-
ral network classifiers within a single architecture.
A term was added to the fine tuning cross entropy
loss function which encouraged diversity among
all pairs of classifiers following Opitz et al. (2016).

3.8 Logistic Regression

Logistic regression (LR) systems were developed
as a baseline against which the neural approach
would be compared. Had annotators used very
simple features such as words or phrases to make
decisions, they would have been found in the
course of LR training. Some of the systems were
good enough to include in the final ensembles.

The vocabulary of the LR system was limited to
the training set. Many feature sets were explored
during model search. The best models preferred
feature sets rather than counts or term frequencies.
Word n-grams of length 1-3 and character n-grams
to length 8 were all considered, along with skip
bigrams. The specifics of the best resulting fea-
ture sets are in Table 3. Table 2 shows the most
important features from an English Task A LR
system, sorted by feature influence, the product
of feature function standard deviation and model
weight. The second column is model weight, with
negative weights contributing to a (H=1) decision.

In all cases, a bias term was added and
Liblinear (Fan et al., 2008) was used to com-
pute the model. L2 regularization was used to en-
courage generalization. Cross-validation was used
to pick the regularization parameters.

3.9 Ensemble

Many systems were created, and final ensembles
were constructed by incremental ablations. An ini-
tial all-in ensemble was created and tested, then it
was tested with each component removed. This
process was iterated on the best performing ab-
lated sets until gains were no longer observed. Ap-
proximately two thousand total ensembles were
created through the ablative search. Two systems
were ablated in Task A EN, three in Task A ES,
one in both Task B conditions. Those systems are
not described in this paper.

Ensembles were constructed using logistic re-
gression on either the classifier outputs or the
classifier outputs and final probabilities from the
model. One oddity to note is that the ensembles
using the probabilities performed better for Task A
and the ensembles ignoring the probabilities per-
formed better in Task B.

Table 3 shows ensemble compositions for each
of the four tested conditions. The first column,
labeled influence, indicates the influence that the
particular component has on the ensemble. It is the
number of cases in which that component’s contri-
bution changes the outcome of the ensemble. It is
calculated by zeroing out all LR weights for that
particular component and noting the difference. In
English, the BERT models had the most influence,
while in Spanish, the influence was more evenly
distributed across the components.

4 Results

Table 3 shows performance of our component
models and ensembles. The calibration set fac-
tored column shows the performance of the com-
ponent on our calibration data. This is the macro
averaged F1 score for Task A and Exact Match
Ratio for Task B. The calibration set ablated col-
umn shows the performance of the ensemble when
that component is removed and the ensemble pa-
rameters are re-optimized. Finally there are the
scores we calculated after the evaluation period for
each of our components using the released refer-
ence sets.

The official scores achieved by our ensembles



458

calibration set test
language task influence factored ablated set component

En A 86.5 49.6 combo
369 84.1 84.6 58.5 BERT w/ MLM, 5-class, constraint adapter

65 78.6 85.7 42.1 BiLSTM+Attn
59 74.5 85.7 48.0 DeepMoji
51 82.6 86.2 52.9 BERT w/ descriptions, 1-class
21 81.3 86.3 47.0 BERT ensemble diversity
19 78.2 86.1 34.2 BiLSTM with name embeddings

8 76.4 85.9 48.0 LR, ngrams 1-3, len 7 chargrams, lowercase
6 75.5 85.8 44.2 Hashtag prediction
5 77.2 85.9 47.6 LR, ngrams 1-3, len 7 chargrams, lowercase

En B 77.3 39.9 combo
435 74.1 75.1 41.0 BERT w/ MLM
215 71.7 75.9 37.4 BERT w/ descriptions, constraint adapter

65 70.6 75.8 33.3 BiLSTM+Attn
55 67.9 76.6 43.1 DeepMoji chain-thaw
41 58.7 76.0 23.2 Hashtag prediction
35 69.3 76.4 29.2 BiLSTM with name embeddings
23 65.6 77.0 38.7 DeepMoji
23 68.6 76.9 41.0 LR, ngrams 1-2, len 7 chargrams, lowercase
16 68.2 76.7 41.1 LR, unigrams, len 5 chargrams, lc, skip bigrams

Es A 87.3 72.9 combo
90 81.1 84.9 74.3 BERT w/ names, 5-class
79 77.9 85.1 73.4 Hashtag prediction
50 82.1 86.6 73.4 BERT w/ names, 1-class
45 83.4 85.0 72.0 BiLSTM+Attn
39 84.8 85.3 74.3 BERT ensemble diversity
35 80.7 86.8 73.3 BERT w/ names, 5-class, constraint adapter
32 79.6 85.0 71.7 LR, ngrams 2-3, len 4 chargrams, lc
17 82.2 85.0 73.4 BiLSTM with name embeddings
15 81.4 86.0 73.7 BERT w/ descriptions, 1-class

Es B 84.7 67.1 combo
48 78.4 81.8 59.7 BERT ensemble diversity
42 77.3 80.7 65.3 BERT w/ descriptions
40 77.8 82.4 63.6 BiLSTM+Attn
26 75.8 80.2 66.8 BERT w/ names, constraint adapter
21 75.6 83.6 65.6 BERT w/ names
20 70.0 82.2 59.4 Hashtag predictions
20 78.4 82.9 67.4 BiLSTM+Attn
19 76.4 82.4 68.8 LR, ngrams 1-3, chargrams 4-7, lc
15 76.2 82.0 66.7 BERT w/ descriptions, constraint adapter
11 79.1 83.3 65.6 BiLSTM with name embeddings

Table 3: Ensembles and Components

are 49.6% and 72.9% Macro F1 on HatEval Task
A English and Spanish, respectively, and 39.9%
and 67.1% EMR on Task B English and Spanish.
A full reporting of results is present in Basile et al.
(2019). A breakdown of test results shows that
our system achieves hate speech detection F1 of
63.9 and 72.7 in English and Spanish, respectively,
which ranked 2nd (of 68) and 1st (of 39) within
Task A. The rankings within Task B were similar,
with mean macro F1 of 61.4 and 77.2 in English
and Spanish, respectively, ranking 2nd (of 42) and
1st (of 24). Finally, we note that only 22 out of the
74 participants submitted entries in all four sub-
tasks. Of those 22 teams, these results represent
the top mean rank across all subtasks.

5 Conclusion

An ensemble of models was used to classify tweets
according to whether they contained hate speech,
aggression, and targeting of individuals. The
novel contributions include using name embed-
dings, substituting twitter author profile prediction
for next sentence prediction in BERT pre-training,
and augmenting BERT’s fine-tuning loss function
with a diversity term to create an ensemble.

There is a discrepancy between the official test
set results and our held-out calibration set, partic-
ularly in the English subtasks, which we attribute
to dataset divergences like those called out in Sec-
tion 2.
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