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Abstract

In this paper we present our model on the

task of emotion detection in textual conver-

sations in SemEval-2019. Our model ex-

tends the Recurrent Convolutional Neural Net-

work (RCNN) by using external fine-tuned

word representations and DeepMoji sentence

representations. We also explored several

other competitive pre-trained word and sen-

tence representations including ELMo, BERT

and InferSent but found inferior performance.

In addition, we conducted extensive sensitiv-

ity analysis, which empirically shows that our

model is relatively robust to hyper-parameters.

Our model requires no handcrafted features

or emotion lexicons but achieved good perfor-

mance with a micro-F1 score of 0.7463.

1 Introduction

Emotions are psychological and physiological

states generated in humans in reaction to inter-

nal or external events. Messages in human con-

versations inherently convey emotions. With the

rise of social media platforms such as Twitter, as

well as chatbots such as Amazon Alexa, there is an

emerging need for machines to understand human

emotions in conversations, which has a wide range

of applications such as opinion analysis in cus-

tomer support (Devillers et al., 2002) and provid-

ing emotion-aware responses (Zhong et al., 2019).

SemEval-2019 Task 3: EmoContext (Chatterjee

et al., 2019b) is designed to promote research in

this task.

This task is to detect emotions in textual conver-

sations. Each conversation is composed of three

turns of utterances and the objective is to detect

the emotion of the last utterance given the first

two utterances as the context. The emotions in

this classification task include happy, sad, angry

and others, adapted from the well-known Ekman’s

six basic emotions: anger, disgust, fear, happiness,

sadness, and surprise (Ekman, 1992). The evalu-

ation criteria is micro-averaged F1 score since the

data is extremely unbalanced, as shown in Table 1.

In recent years, pre-trained word and sentence

representations achieved very competitive per-

formance in many NLP tasks, e.g., fine-tuned

word embeddings using distant training (Cliche,

2017) and tweet sentence representations Deep-

Moji (Felbo et al., 2017) on sentiment analysis,

and contextualized word representations BERT

(Devlin et al., 2018) on 11 NLP tasks. Motivated

by these successes, in this task we explored differ-

ent word and sentence representations. We then

fed these representations into a Recurrent Con-

volutional Neural Network (RCNN) (Lai et al.,

2015) for classification. RCNN includes a Long

short-term memory (LSTM) network (Hochreiter

and Schmidhuber, 1997) to capture word order-

ing information and a max-pooling layer (Scherer

et al., 2010) to learn discriminative features. We

also experimented LSTM and CNN in our pre-

liminary analysis but achieved worse performance

as compared to RCNN. Our final system adopted

fine-tuned word embeddings and DeepMoji as our

choices of word and sentence representations, re-

spectively, due to their superior performance on

the validation dataset. The code is publicly avail-

able at Github1.

2 Related Work

Emotion detection in textual conversations is an

under-explored research task. The majority of ex-

isting works focused on the multi-modality set-

tings (Devillers et al., 2002; Hazarika et al., 2018;

Majumder et al., 2019). Chatterjee et al. (2019a) is

one of the early works on the textual modality that

first collected the dataset used in this task and then

1https://github.com/zhongpeixiang/SemEval2019-Task3-
EmotionDetection
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Dataset Split Size #Happy #Sad #Angry #Others Average Utterance Length

Train 30160 4243 5463 5506 14948 5.22

Val 2755 142 125 150 2338 5.05

Test 5509 284 250 298 4677 5.05

Table 1: Total number of conversations and their distributions over each emotion class for each dataset split.

Average number of tokens per utterance for each dataset split are also reported.

proposed an LSTM model with both semantic and

sentiment embeddings to classify emotions. This

task is also closely related to sentiment analysis

(Pang et al., 2008) where the opinions of a piece

of text is to be identified. One major difference be-

tween them is that this task detects emotions only

on the last portion of a piece of text and the rest is

treated as context.

Our model leverages pre-trained word and sen-

tence representations. There is a research trend

on word and sentence embeddings after the in-

vention of Word2Vec (Mikolov et al., 2013).

Cliche (2017) fine-tuned word embeddings us-

ing CNN-based sentiment classification model and

distant training (Go et al., 2009). Peters et al.

(2018) proposed a contextualized word embed-

ding named ELMo to incorporate context informa-

tion and solve the polysemy issues in conventional

word embeddings. Devlin et al. (2018) proposed

another contextualized word embedding named

BERT by extending the context to both directions

and training on the masked language modelling

task. Kiros et al. (2015) proposed a sentence-level

representation named SkipThought, which shares

similar ideas to Word2Vec but operates on sen-

tence level. Conneau et al. (2017) proposed In-

ferSent by learning sentence representations on

natural language inference tasks. Felbo et al.

(2017) proposed DeepMoji by learning tweet sen-

tence representations in the emoji classification

task using 1246 million tweets and distant train-

ing.

Our RCNN model is closely related to neural

network based sentiment analysis models. Two of

the most popular models are LSTMs and CNNs.

LSTM-based models can capture the word or-

dering information and have achieved the state-

of-the-art performance on many sentiment anal-

ysis datasets (Gray et al., 2017; Liu et al., 2018;

Howard and Ruder, 2018). CNN-based mod-

els can capture local dependencies, discriminative

features, and are parallelizable for efficient com-

putation (Kim, 2014; Johnson and Zhang, 2017).

3 System Description

In this section we describe our data preprocess-

ing procedures and illustrate how we leverage pre-

trained word and sentence representations in our

RCNN model. The overall architecture is depicted

in Figure 1.

3.1 Data Preprocessing

We concatenated three utterances as one sentence,

separated by EOS tokens. We used the tokenizer

from Spacy2 for tokenization. We removed train-

ing sentences that have more than 75 tokens. We

removed duplicate punctuations and spaces. We

kept all remaining tokens in the training dataset as

the vocabulary.

3.2 Pre-trained Word Representation

We fine-tuned the word embeddings obtained from

(Baziotis et al., 2017), which has an embedding

size of 100 and is pre-trained on 330M English

Twitter messages using Glove (Pennington et al.,

2014). The fine-tuning is conducted on the bi-

nary sentiment classification task using the basic

CNN model (Kim, 2014) on 1.6 million tweets

(Go et al., 2009). These tweets are labelled with

positive and negative sentiments. Fine-tuning on

these tweets introduces sentiment-discriminative

features to word embeddings (Cliche, 2017). The

CNN model has kernel sizes of 1, 2, and 3. Each

kernel size has 300 filters. During fine-tuning, the

embedding layer is first frozen for one epoch and

then unfrozen for another three epochs.

3.3 Pre-trained Sentence Representation

We adopted DeepMoji (Felbo et al., 2017) as the

sentence representations in our model. Each sen-

tence will be encoded into a vector of size 2304.

DeepMoji is trained on the 64-class emoji clas-

sification task using 1246 million tweets. Since

emoji reflects emotions and sentiments, Deep-

Moji is an ideal model to provide emotion-

discriminative sentence representations. We also

2https://spacy.io/
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Figure 1: Overall architecture of our proposed model.

explored InferSent (Conneau et al., 2017), another

sentence representation model with competitive

performance on sentence classification and infor-

mation retrieval tasks (Perone et al., 2018).

3.4 RCNN

As shown in Figure 1, we fed word and sen-

tence representations into a RCNN model. The

RCNN model mainly comprises of a two-layer Bi-

directional LSTM (BiLSTM), a linear transforma-

tion layer and a max-pooling layer. At the em-

bedding layer, each sentence is transformed to a

sequence of word embeddings Wi of size 100 us-

ing our pre-trained word representations, where

i = 1, 2, ..., n, and n is the number of tokens

in the concatenated utterance. The BiLSTM en-

codes these word embeddings into hidden states

h
f
i , h

b
i in both forward and backward directions,

respectively, where each direction has a hidden

size of 200. The hidden states in both directions

are concatenated together, along with the word

representations Wi to form a vector of size 500.

A linear transformation is then applied to project

the resulted vector into a vector of size 200, fol-

lowed by a max-pooling layer to extract discrim-

inative sentence features. Finally, the DeepMoji

sentence representation is concatenated with the

pooled vector to form a final sentence represen-

tation of size 2504, followed by a softmax layer

for classification.

3.5 Training

We train our model on the training dataset and

fine-tune on the validation dataset based on the

micro-F1 score. Since the dataset is highly unbal-

anced, we use weighted cross-entropy loss for op-

timization, where the weights are the ratio of vali-

dation dataset label distribution to training dataset

label distribution, followed by a normalization to

ensure that the sum of weights is 1. We use Adam

(Kingma and Ba, 2014) optimizer with a learning

rate of 0.0005 and batch size of 64. We clip the

norm of gradients to 5. We trained our model 6

epochs. The learning rate is annealed by a factor

of 0.2 every epoch after epoch 5. We also freeze

the embedding for the first two epochs. We use

dropout rate of 0.5 in BiLSTM and 0.7 in linear

layers. The model is implemented in PyTorch.

4 Result Analysis

In this section we explored different word and sen-

tence representations and compared their perfor-

mance on the test set. We also conducted sen-

sitivity analysis for our model hyper-parameters.

All results are averaged across 5 different seeds.

It is worth noting that the settings with the best

test scores in the analysis below are not exactly

the same as our best system on the leaderboard

since our best system is fine-tuned on the valida-

tion dataset, which do not guarantee to produce the

best test results.
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Figure 2: Sensitivity analysis on model hyper-parameters.

Word Representation micro-F1

Original Glove 0.7250

Pre-trained Glove 0.7279

Fine-tuned Glove 0.7339

ELMo 0.6990

BERT 0.6656

Table 2: Micro-F1 score on the test set using different

word representations.

Sentence Representation micro-F1

None 0.7194

InferSent (GloVe) 0.7259

InferSent (fastText) 0.7277

DeepMoji 0.7299

DeepMoji + InferSent (GloVe) 0.7298

DeepMoji + InferSent (fastText) 0.7344

Table 3: Micro-F1 score on the test set using different

sentence representations.

We explored the original GloVe embedding

trained on 27B tweet tokens3, pre-trained GloVe

embedding4, our fine-tuned GloVe embedding,

ELMo embedding and BERT embedding. The re-

sults are shown in Table 2. Fine-tuned GloVe em-

bedding performs noticeably better than the orig-

inal GloVe embedding and the pre-trained GloVe

embedding. Surprisingly, contextualized embed-

dings such as ELMo and BERT perform worse

than the original GloVe embedding. Possible rea-

sons for their inferior performance are 1) they are

fixed during training, which may hinder the overall

optimization. 2) they have large embedding size,

which can easily cause overfitting.

We explored no sentence embedding, InferSent

trained on GloVe, InferSent trained on fastText,

and DeepMoji. The results are shown in Table

3https://nlp.stanford.edu/projects/glove/
4https://github.com/cbaziotis/datastories-semeval2017-

task4

3. It is clear that sentence representations im-

proved model performance significantly. In partic-

ular, DeepMoji achieves the best performance for

single sentence representation. InferSent trained

on fastText consistently performs better than In-

ferSent trained on GloVe. In addition, concatenat-

ing two sentence representations together further

improved model performance.

We conducted sensitivity analysis on our model

hyper-parameters: hidden size, number of layers

in BiLSTM, batch size, learning rate, dropout in

BiLSTM and dropout in linear layers. The results

are depicted in Figure 2. Our model is relatively

robust to hyper-parameters except for the learn-

ing rate. When learning rate is around 0.0001 or

smaller, the model is unable to be trained effec-

tively.

5 Conclusion

In this paper we presented our model on the task

of emotion detection in textual conversations in

SemEval-2019. We explored different word and

sentence representations in the RCNN model and

achieved competitive results. Our result analy-

sis indicate that both pre-trained word and sen-

tence representations help improve the perfor-

mance of RCNN. However, currently popular con-

textualized word representations such as ELMo

and BERT produced inferior results.
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