
Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 256–260
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

256

MILAB at SemEval-2019 Task 3: Multi-View Turn-by-Turn Model for
Context-Aware Sentiment Analysis

Yoonhyung Lee, Yanghoon Kim, and Kyomin Jung
Seoul National University, Seoul, Korea

{cpi1234, ad26kr, kjung}@snu.ac.kr

Abstract

This paper describes our system for SemEval-
2019 Task 3: EmoContext, which aims to pre-
dict the emotion of the third utterance consid-
ering two preceding utterances in a dialogue.
To address this challenge of predicting the
emotion considering its context, we propose
a Multi-View Turn-by-Turn (MVTT) model.
Firstly, MVTT model generates vectors from
each utterance using two encoders: word-level
Bi-GRU encoder (WLE) and character-level
CNN encoder (CLE). Then, MVTT grasps
contextual information by combining the vec-
tors and predict the emotion with the contex-
tual information. We conduct experiments on
the effect of vector encoding and vector com-
bination. Our final MVTT model achieved
0.7634 microaveraged F1 score.

1 Introduction

Sentiment analysis is a task of identifying emo-
tional information from text materials and has
been studied by various research fields since it can
be applied to many applications such as public sur-
vey and market analysis. However, most studies in
sentiment analysis have only focused on a single
sentence (Socher et al., 2011) or a single document
(Pang and Lee, 2005). It is still hard to predict the
emotion of a sentence with extra contextual infor-
mation because the emotion can be understood dif-
ferently depending on its context. SemEval-2019
Task 3: EmoContext (Chatterjee et al., 2019) pro-
vides a dataset of dialogues which consist of three
utterances between two users (Figure 1). Partic-
ipants are required to predict the emotion of the
third utterance among ‘Happy’, ‘Sad’, ‘Angry’,
and ‘Others’, considering its context of two pre-
ceding utterances.

In this paper, we propose a Multi-View Turn-
by-Turn (MVTT) model which encodes each ut-
terance separately and combines the encoded vec-

Figure 1: An example of a dialogue between two users.

tors to get the contextual information. MVTT
model first generates vectors from each utterance
with two encoders: word-level Bi-GRU encoder
(WLE) and character-level CNN encoder (CLE).
The two-encoder strategy makes MVTT model
more robust to the noisy texts which have a lot
of typos and abbreviations. Then, MVTT extracts
contextual information by combining the vectors
and makes a prediction. We compare the MVTT
model with some variants focusing on utterance
vector encoding and utterance vector combination
methods with microaveraged F1 score (F1) which
is the main evaluation metric.

This paper is organized as follows: Section
2 describes MVTT model architecture in detail.
Section 3 describes dataset and various methods
that we use to reflect the dataset’s characteristics
to our training. Section 4 compares our results
of MVTT model and other variants, and Section
5 outlines our conclusions.

2 System Description

This section describes our Multi-View Turn-by-
Turn (MVTT) model which consists of two en-
coders: word-level Bi-GRU encoder (WLE) and
character-level CNN encoder (CLE), which make
our model more robust to noisy data. First, MVTT
generates utterance vectors from each utterance
using the encoders. Then, to understand the con-
textual information, MVTT combines the vectors
into context-aware dialogue vectors and makes a



257

Figure 2: Overview of MVTT model: how each encoder generates utterance vectors from each utterance and how
MVTT model combines the vectors to make a prediction.

prediction using the context-aware dialogue vec-
tors.

In this section, we first describe how each en-
coder generates the utterance vectors from each ut-
terance and how MVTT combines the vectors into
the context-aware dialogue vectors in detail.

2.1 Word-level Bi-GRU encoder

Figure 3: Word-level Bi-GRU encoder.

Word-level Bi-GRU encoder (WLE) takes
an utterance as a sequence of word tokens
{w1, w2, ..., wN}. The tokens are fed into an
embedding layer which is initialized with Glove
word-embedding (Pennington et al., 2014) trained
with a large twitter corpus. Then the embedded
tokens are fed into the Bi-GRU encoder to get an
utterance vector by max-pooling its hidden states
over time.

WLE allows the model to benefit from pre-
trained Glove word-embedding which have abun-
dant information in syntactic and semantic word
relationships. Also, MVTT benefits a lot from Bi-
GRU encoder (Cho et al., 2014): (a) MVTT model
can understand an text contextually with previous
word information using Bi-GRU’s gating mecha-
nism; (b) by reading an text in two opposite ways,
MVTT model can extract contextually more infor-
mative information. This is especially beneficial
for MVTT to understand contextual meaning of a
dialogue from each utterance.

Figure 4: Character-level CNN encoder.

2.2 Character-level CNN encoder

Character-level CNN encoder (CLE) takes
an input as a sequence of character tokens
{c1, c2, ..., cN}. The tokens are fed into a ran-
domly initialized embedding layer, and then the
embedded tokens are fed into the CNN encoder
(Kim, 2014) to get an utterance vector.

Since it is impossible to consider all words in a
word-level encoding, vocabulary consisting of 15k
words is pre-defined based on word frequency and
the other words are considered as out of vocabu-
lary (OOV) tokens. Therefore, if the model only
depends on WLE to extract features from a se-
quence of word tokens, a significant proportion of
words will be tokenized as the OOV tokens when
the texts are noisy. As a result, the model can’t suf-
ficiently utilize the benefit from pre-trained word-
embedding. However, since the CNN encoder
helps extract the local features from a sequence of
character tokens, CLE enables our model to spec-
ulate the meaning of the text has some typos.

2.3 Multi-View Turn-by-Turn encoding

Multi-View Turn-by-Turn encoding is a method of
generating utterance vectors from each utterance
first and then combining the vectors into context-
aware dialogue vectors. MVTT makes a predic-
tion by encoding each utterance and combining
them using concatenation and feed-forward neural
network (FNN) as follows:



258

w13 = FNN([w1;w3])

w123 = FNN([w13;w2])

c13 = FNN([c1; c3])

c123 = FNN([c13; c2])

pred = FNN([w123; c123])

where w1, w2, w3 are the utterance vectors
from each utterance generated by WLE and
c1, c2, c3 are the utterance vectors from each ut-
terance generated by CLE.

Since the first and third utterances are written
by the same user, they are more informative in pre-
dicting the emotion of the third utterance. There-
fore, by processing each utterance separately and
combining them as above, the model can under-
stand the context while maintaining the important
emotional information.

2.4 Binary relevance classification

Binary relevance classification is a classification
scheme to independently train binary classifiers
for each label. It has usually been used for multi-
label classification tasks and we apply the method
to our task. In our system, we build three identi-
cal classifiers for ‘Happy’, ‘Sad’, ‘Angry’ classes
and independently train them to output probabili-
ties of each class. Then, we take the emotion with
the highest probability as a class prediction, oth-
erwise, if all the probabilities don’t exceed 50%,
take ‘Others’ as a predicted class.

3 Experiments

SemEval-2019 Task 3: EmoContext provided di-
alogue dataset consisting of three utterances writ-
ten by two users and each sample is labeled among
‘Happy’, ‘Sad’, ‘Angry’ and ‘Others’. In this sec-
tion, we describe the dataset and some implemen-
tation details.

3.1 Datasets

The provided dialogue dataset is split into train-
ing, validation and test sets. Table 1 shows the
label distribution of each data split. As Table 1
indicates, there are large differences in class label
distributions among data splits and it is important
to consider the differences in configuring our sys-
tem.

Data split Happy Sad Angry Others
training 4243 5463 5506 14948

validation 142 125 150 2338
test 284 250 290 4677

Table 1: The statistics for the number of labels of each
split.

3.2 Implementation details
We optimize our model using Adam optimizer
(Kingma and Ba, 2014) and learning rate is set to
0.0015. We use Bi-GRU with 256 hidden units and
CNN filters with window sizes of [3, 5, 9], 64 fea-
ture maps each. All FNN have 256 hidden units
with tanh activation function except for the last
FNN classifier with sigmoid function.

3.3 Pre-processing
In this task, we pre-process the utterances as de-
scribed in Figure 5. We first lowercase all texts
and replace abbreviations with their original forms
as many as possible to make the best use of Glove
word-embedding. Next, we unify emojis that have
similar meanings into one specific emoji to help
our model to learn emoji embeddings.

Figure 5: Text pre-processing.

3.4 Label smoothing
Label smoothing is a method to relax our confi-
dence on the labels by using lower target values
like 0.7 instead of 1. In the test set, almost all sam-
ples belong to the ”Others” class with only a small
percentage of examples belonging to the ”Happy”,
”Sad”, or ”Angry” classes. Therefore, if we train
each classifier for each emotion with label smooth-
ing, we can prevent the model from predicting a
emotion with excessive confidence and make the
model be more likely to predict the emotions as
‘Others’.

4 Results

In this section, we compare the performance of our
MVTT model with some variants of our model.
Since our model mainly consists of WLE and
CLE, we try to investigate how our model benefits



259

from both encoders. Further, we found that dif-
ferent combination methods of utterance vectors
make a great difference in model evaluation. All
of the results below are experimental results on the
test set. MVTT outperforms all other variants and
achieved 0.7634 microaveraged f1 score.

4.1 Ablation test on sentence embeddings
Our MVTT model utilizes the features of WLE
and CLE. As is shown in Table 2, the model
takes more advantage from WLE than CLE since
the WLE utilizes the pre-trained word-embedding
vectors trained on large twitter corpus which have
abundant information in syntactic and semantic
word relationships in the corpus. However, when
we use both encoders, our MVTT model outper-
forms both models that use only one encoder. This
results from the fact that CLE gives robustness to
our model because it takes an input as a sequence
of character tokens and extracts the local features
from it.

Model F1(H) F1(S) F1(A) F1µ
WLE 0.7227 0.7680 0.7638 0.7515
CLE 0.6975 0.7860 0.7089 0.7270
MVTT 0.7273 0.7853 0.7767 0.7634

Table 2: Performance comparison among WLE, CLE
and MVTT.

4.2 Impact of Turn-by-Turn encoding
Considering the characteristic of the given task,
we find that the way to combine features from each
utterance of a dialog is crucial. We tried several
different combination methods, especially in the
order of combination, to find out which setting has
the most explainable structure with the best perfor-
mance. We here list some variants with compara-
bly better performance:

• C123: We simply concatenate w1 (c1),
w2 (c2), w3 (c3) and feed it into a FNN to
generate context-aware dialogue vectors.

• C12 3: Firstly concatenate w1 (c1), w2 (c2)
and feed it into a FNN, and then concate-
nate the output and w3 (c3) and feed it into
another FNN to generate context-aware dia-
logue vectors.

• C13 2 (MVTT): Firstly concatenate w1 (c1),
w3 (c3) and feed it into a FNN, and then con-
catenate the output and w2 (c2) and feed it

into another FNN to generate context-aware
dialogue vectors.

• Submission: Ensemble of C123, C12 3,
C13 2 models with various hyper parameters

Model F1(H) F1(S) F1(A) F1µ
C123 0.7119 0.7798 0.7602 0.7502
C12 3 0.7029 0.7674 0.7524 0.7406
Submission 0.7236 0.7860 0.7656 0.7581
MVTT 0.7273 0.7853 0.7767 0.7634

Table 3: The effect of vector combination on perfor-
mance.

Table 3 shows the results of MVTT and some
variants which combine the utterance vectors in
other ways. As is shown in Table 3, our utterance
vector combination method enables our model to
understand both the emotional and contextual in-
formation. Since it is likely that a person’s emo-
tion is maintained through a 3-turn dialogue, com-
bining the utterance vectors by user first and then
making a prediction is beneficial to understand the
context while maintaining emotional information.

5 Conclusion

In this paper, we propose a Multi-View Turn-by-
Turn model (MVTT) for SemEval-2019 Task 3:
EmoContext. Our goal was to predict the emo-
tion of the third utterance in a dialogue consisting
of three utterances. Firstly, MVTT model gen-
erates utterance vectors from each utterance us-
ing two encoders: word-level Bi-GRU encoder
and character-level CNN encoder. The encoders
make MVTT model more robust to the noisy texts.
Then, MVTT combines the vectors to understand
both the emotional and contextual meanings. We
evaluated our MVTT model and its variants, fo-
cusing on utterance vector encoding and utter-
ance vector combination. Our final MVTT model
achieved 0.7634 microaveraged f1 score.

References
Ankush Chatterjee, Kedhar Nath Narahari, Meghana

Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger



260

Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the
43rd annual meeting on association for computa-
tional linguistics, pages 115–124. Association for
Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Richard Socher, Jeffrey Pennington, Eric H Huang,
Andrew Y Ng, and Christopher D Manning. 2011.
Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In Proceedings of the
conference on empirical methods in natural lan-
guage processing, pages 151–161. Association for
Computational Linguistics.


