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Abstract

This paper describes the system submitted to
the SemEval 2019 shared task 1 ‘Cross-lingual
Semantic Parsing with UCCA’. We rely on the
semantic dependency parse trees provided in
the shared task which are converted from the
original UCCA files and model the task as tag-
ging. The aim is to predict the graph structure
of the output along with the types of relations
among the nodes. Our proposed neural archi-
tecture is composed of Graph Convolution and
BiLSTM components. The layers of the sys-
tem share their weights while predicting de-
pendency links and semantic labels. The sys-
tem is applied to the CONLLU format of the
input data and is best suited for semantic de-
pendency parsing.

1 Introduction

Universal Conceptual Cognitive Annotation
(UCCA) (Abend and Rappoport, 2013) is a
semantically motivated approach to grammatical
representation inspired by typological theories of
grammar (Dixon, 2012) and Cognitive Linguistics
literature (Croft and Cruse, 2004). In parsing,
bi-lexical dependencies that are based on binary
head-argument relations between lexical units
are commonly employed in the representation of
syntax (Nivre et al., 2007; Chen and Manning,
2014) and semantics (Hajič et al., 2012; Oepen
et al., 2014; Dozat and Manning, 2018).

UCCA differs significantly from traditional de-
pendency approaches in that it attempts to ab-
stract away traditional syntactic structures and re-
lations in favour of employing purely semantic
distinctions to analyse sentence structure. The
shared task, ‘cross-lingual semantic parsing with
UCCA’ (Hershcovich et al., 2019) consists in pars-
ing English, German, and French datasets using
the UCCA semantic tagset. In order to enable
multi-task learning, the UCCA-annotated data is

automatically converted to other parsing formats,
e.g. Abstract Meaning Representation (AMR) and
Semantic Dependency Parsing (SDP), inter alia
(Hershcovich et al., 2018).

Although the schemes are formally different,
they have shared semantic content. In order to
perform our experiments, we target the converted
CONLLU format, which corresponds to tradi-
tional bi-lexical dependencies and rely on the con-
version methodology which is provided in the
shared task (Hershcovich et al., 2019) to attain
UCCA graphs.

UCCA graphs contain both explicit and implicit
units 1 However, in bi-lexical dependencies, nodes
are text tokens and semantic relations are direct
bi-lexical relations between the tokens. The con-
version between the two format results in partial
loss of information. Nonetheless, we believe that
it is worth trying to model the task using one of
the available formats (i.e. semantic dependency
parsing) which is very popular among NLP re-
searchers.

Typically, transition-based methods are used in
syntactic (Chen and Manning, 2014) and seman-
tic (Hershcovich et al., 2017) dependency parsing.
By contrast, our proposed system shares several
similarities with sequence-to-sequence neural ar-
chitectures, as it does not specifically deal with
parsing transitions. Our model uses word, POS
and syntactic dependency tree representations as
input and directly produces an edge-labeled graph
representation for each sentence (i.e. edges and
their labels as two separate outputs). This multi-
label neural architecture, which consists of a BiL-
STM and a Graph Convolutional Network (GCN),
is described in Section 3.

1Explicit units (terminal nodes) correspond to tokens in
the text, but implicit (semantic) units have no corresponding
component in the text.
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2 Related Work

A recent trend in parsing research is sequence-to-
sequence learning (Vinyals et al., 2015b; Kitaev
and Klein, 2018), which is inspired from Neural
Machine Translation. These methods ignore ex-
plicit structural information in favour of relying on
long-term memory, attention mechanism (content-
based or position-based) (Kitaev and Klein, 2018)
or pointer networks (Vinyals et al., 2015a). By do-
ing so, high-order features are implicitly captured,
which results in competitive parsing performance
(Jia and Liang, 2016).

Sequence-to-sequence learning has been partic-
ularly effective in Semantic Role Labeling (SRL)
(Zhou and Xu, 2015). By augmenting these
models with syntactic information, researchers
have been able to develop state-of-the-art systems
for SRL (Marcheggiani and Titov, 2017; Strubell
et al., 2018).

As information derived from dependency parse
trees can significantly contribute towards under-
standing the semantics of a sentence, Graph Con-
volutional Network (GCN) (Kipf and Welling,
2017) is used to help our system perform semantic
parsing while attending to structural syntactic in-
formation. The architecture is similar to the GCN
component employed in Rohanian et al. (2019) for
detecting gappy multiword expressions.

3 Methodology

For this task, we employ a neural architecture util-
ising structural features to predict semantic pars-
ing tags for each sentence. The system maps a
sentence from the source language to a probability
distribution over the tags for all the words in the
sentence. Our architecture consists of a GCN layer
(Kipf and Welling, 2017), a bidirectional LSTM,
and a final dense layer on top.

The inputs to our system are sequences of
words, alongside their corresponding POS and
named-entity tags.2 Word tokens are repre-
sented by contextualised ELMo embeddings (Pe-
ters et al., 2018), and POS and named-entity tags
are one-hot encoded. We also use sentence-level
syntactic dependency parse information as input
to the system. In the GCN layer, the convolu-
tion filters operate based on the structure of the
dependency tree (rather than the sequential order

2spaCy (Honnibal and Johnson, 2015) is used to generate
POS, named-entity and syntactic dependency tags.

of words).

Graph Convolution. Convolutional Neural Net-
works (CNNs), as originally conceived, are se-
quential in nature, acting as detectors of N-
grams (Kim, 2014), and are often used as feature-
generating front-ends in deep neural networks.
Graph Convolutional Network (GCN) has been in-
troduced as a way to integrate rich structural rela-
tions such as syntactic graphs into the convolution
process.

In the context of a syntax tree, a GCN can be
understood as a non-linear activation function f
and a filter W with a bias term b:

c = f(
∑

i∈r(v)
Wxi + b) (1)

where r(v) denotes all the words in relation with
a given word v in a sentence, and c represents the
output of the convolution. Using adjacency matri-
ces, we define graph relations as mask filters for
the inputs (Kipf and Welling, 2017; Schlichtkrull
et al., 2017).

In the present task, information from each graph
corresponds to a sentence-level dependency parse
tree. Given the filter Ws and bias bs, we can there-
fore define the sentence-level GCN as follows:

Cs = f(WsX
TA+ bs) (2)

where Xn×v, An×n, and Co×n are tensor rep-
resentation of words, the adjacency matrix, and
the convolution output respectively.3 In Kipf
and Welling (2017), a separate adjacency matrix
is constructed for each relation to avoid over-
parametrising the model; by contrast, our model
is limited to the following three types of relations:
1) the head to the dependents, 2) the dependents
to the head, and 3) each word to itself (self-loops)
similar to Marcheggiani and Titov (2017). The fi-
nal output is the maximum of the weights from the
three individual adjacency matrices.
The model architecture is depicted in Figure 1.

4 Experiments

Our system participated in the closed track for En-
glish and German and the open track for French.
We exclusively used the data provided in the
shared task. The system is trained on the train-
ing data only, and the parameters are optimised us-
ing the development set. The results are reported

3o: output dimension; v: word vectors dimension; n: sen-
tence length
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Figure 1: A GCN-based recurrent architecture.

on blind-test data in both in-domain and out-of-
domain settings. We focus on predicting the pri-
mary edges of UCCA semantic relations and their
labels.

4.1 Data

The datasets of the shared task are devised for four
settings: 1) English in-domain, using the Wiki cor-
pus; 2) English out-of-domain, using the Wiki cor-
pus as training and development data, and 20K
Leagues as test data; 3) German in-domain, using
the 20K Leagues corpus; 4) French setting with
no training data (except trial data), using the 20K
Leagues corpus as development and test data.

Whilst the annotated files used by the shared
task organisers are in the XML format, several
other formats are also available. We decided to
use CONLLU, as it is more interpretable. How-
ever, according to the shared task description,4 the
conversion between XML and CONLLU, which is
a necessary step before evaluation, is lossy. Her-
shcovich et al. (2017) used the same procedure of
performing dependency parsing methods on CON-
LLU files and converting the predictions back to
UCCA.

4.2 Settings

We trained ELMo on each of the shared task
datasets using the system implemented by Che
et al. (2018). The embedding dimension is set to
1024. The number of nodes is 256 for GCN and
300 for BiLSTM, and we applied a dropout of 0.5
after each layer. We used the Adam optimiser for
compiling the model.

We tested our model in four different settings,

4https://competitions.codalab.org/
competitions/19160#fn1

as explained in Section 4.1. The parameters are
optimised on the English Wiki development data
(batch-size = 16 and number of epochs = 100) and
used for all four settings. As no training data was
available for French, the trained system on English
Wiki was used to parse French sentences of 20K
Leagues. For this reason the French model is eval-
uated within the open track.

4.3 Official Evaluation

Our model predicts two outputs for each dataset:
primary edges and their labels (UCCA semantic
categories). 5

Table 1 shows the performance (in terms of pre-
cision, recall, and F1-score) for predicting primary
edges in both labeled (i.e. with semantic tags) and
unlabeled settings (i.e. ignoring semantic tags).
Table 2 shows F1-scores for each semantic cate-
gory separately. Although the overall performance
of the system, as shown in the official evaluation
in Table 1, is not particularly impressive, there are
a few results worth reporting. These are listed in
Table 2.

Our system is ranked second in predicting four
relations, i.e. L (linker), N (Connector), R (Rela-
tor), and G (Ground), in all settings displayed in
bold. A plausible explanation would be that these
relations are somewhat less affected by the loss of
information incurred as a result of the conversions
between formats.

5 Discussion

Our neural model is applied to UCCA corpora,
which are converted to bi-lexical semantic depen-
dency graphs and represented in the CONLLU for-
mat. The conversion from UCCA annotations to
CONLLU tags appears to have a distinctly neg-
ative impact on the system’s overall performance.
As reported in the shared task description, convert-
ing the English Wiki corpus to the CONLLU for-
mat and back to the standard format results in an
F1-score of only 89.7 for primary labeled edges.
This means that our system cannot go beyond this
upper limit.

Since our system is trained on CONLLU files
and the evaluation involves converting the CON-
LLU format back to the standard UCCA format,

5For more details about UCCA semantic categories and
the way they are used for the shared task, see https:
//competitions.codalab.org/competitions/
19160#learn_the_details-overview. Our system
does not predict remote edges defined in UCCA.

https://competitions.codalab.org/competitions/19160#fn1
https://competitions.codalab.org/competitions/19160#fn1
https://competitions.codalab.org/competitions/19160#learn_the_details-overview
https://competitions.codalab.org/competitions/19160#learn_the_details-overview
https://competitions.codalab.org/competitions/19160#learn_the_details-overview
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labeled unlabeled
dataset track Avg. F1 P R F1 Avg. F1 P R F1

UCCA English-Wiki closed 0.657 0.673 0.655 0.664 0.809 0.829 0.807 0.818
UCCA English-20K closed 0.626 0.632 0.642 0.637 0.8 0.808 0.821 0.814
UCCA German-20K closed 0.71 0.72 0.72 0.72 0.851 0.863 0.862 0.862
UCCA French-20K* open 0.438 0.443 0.447 0.445 0.690 0.698 0.705 0.702

Table 1: Official results of the shared task evaluation for predicting different semantic category labels. (* The
results for French are for Post-Evaluation.)

dataset (D) (C) (N) (E) (F) (G) (L) (H) (A) (P) (U) (R) (S) (Terminal)
English-Wiki 0.7 0.708 0.866 0.738 0.801 0.286 0.836 0.289 0.582 0.451 0.948 0.914 0 0.997
English-20K 0.521 0.733 0.776 0.743 0.647 0.04 0.719 0.248 0.538 0.527 0.978 0.844 0 0.997
German-20K 0.691 0.813 0.796 0.82 0.845 0.778 0.834 0.375 0.697 0.561 0.997 0.916 0 0.998
French-20K* 0.223 0.569 0.579 0.551 0.378 0.000 0.536 0.118 0.314 0.358 0.987 0.711 0 0.993

Table 2: Official results of the shared task evaluation for predicting Primary edges and their labels. (* The results
for French are for Post-Evaluation.)

the reported results for our system can be mislead-
ing. In order to further investigate this issue, we
performed an evaluation using the English Wiki
development data, comparing the predicted labels
with the gold standard in development set in the
CONLLU format. The average F1-score for la-
belled edges was 0.71 compared to the 0.685 score
our system achieved on the development set using
the official evaluation script.

This clearly demonstrates that our system fares
significantly better if it receives its input in the
form of bi-lexical dependency graphs. Therefore,
the system is best suited for semantic dependency
parsing, although we believe that promising re-
sults could also be achieved in UCCA annota-
tion if the conversion between the CONLLU and
UCCA formats is improved to map and preserve
information more accurately.

6 Conclusion and Future Work

In this paper, we described the system we sub-
mitted to the SemEval-2019 Task 1: ‘Semantic
Parsing using Graph Convolutional and Recurrent
Neural Networks’. The model performs semantic
parsing using information derived from syntactic
dependencies between words in each sentence. We
developed the model using a combination of GCN
and BiLSTM components. Due to the penalisation
resulting from the use of lossy CONLLU files, we
argue that the results cannot be directly compared
with those of the other task participants. 6

In the future, we would like to build on the work

6The code is available at https://github.com/
shivaat/GCN-Sem.

presented in this paper by applying the architec-
ture to the standard UCCA dataset, or possibly
training the system to perform bi-lexical semantic
dependency annotation.
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