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Abstract

Words are polysemous and multi-faceted,
with many shades of meanings. We sug-
gest that sparse distributed representations are
more suitable than other, commonly used,
(dense) representations to express these mul-
tiple facets, and present Category Builder, a
working system that, as we show, makes use of
sparse representations to support multi-faceted
lexical representations. We argue that the set
expansion task is well suited to study these
meaning distinctions since a word may be-
long to multiple sets with a different reason for
membership in each. We therefore exhibit the
performance of Category Builder on this task,
while showing that our representation captures
at the same time analogy problems such as
“the Ganga of Egypt” or “the Voldemort of
Tolkien”. Category Builder is shown to be
a more expressive lexical representation and
to outperform dense representations such as
Word2Vec in some analogy classes despite be-
ing shown only two of the three input terms.

1 Introduction

Word embeddings have received much attention
lately because of their ability to represent similar
words as nearby points in a vector space, thus sup-
porting better generalization when comparisons
of lexical items are needed, and boosting the ro-
bustness achieved by some deep-learning systems.
However, a given surface form often has multiple
meanings, complicating this simple picture. Arora
et al. (2016) showed that the vector corresponding
to a polysemous term often is not close to any of
that of its individual senses, thereby breaking the
similar-items-map-to-nearby-points promise. The
polysemy wrinkle is not merely an irritation but,
in the words of Pustejovsky and Boguraev (1997),
“one of the most intractable problems for language
processing studies”.

Our notion of Polysemy here is quite broad,
since words can be similar to one another along
a variety of dimensions. The following three pairs
each has two similar items: (a) {ring, necklace},
(b) {ring, gang}, and (c) {ring, beep}. Note that
ring is similar to all words that appear as second
words in these pairs, but for different reasons, de-
fined by the second token in the pairs. While this
example used different senses of ring, it is easy to
find examples where a single sense has multiple
facets: Clint Eastwood, who is both an actor and
a director, shares different aspects with directors
than with actors, and Google, both a website and
a major corporation, is similar to Wikipedia and
General Electric along different dimensions.

Similarity has typically been studied pairwise:
that is, by asking how similar item A is to item
B. A simple modification sharply brings to fore
the issues of facets and polysemy. This modifi-
cation is best viewed through the task of set ex-
pansion (Wang and Cohen, 2007; Davidov et al.,
2007; Jindal and Roth, 2011), which highlights the
similarity of an item (a candidate in the expansion)
to a set of seeds in the list. Given a few seeds (say,
{Ford, Nixon}), what else belongs in the set? Note
how this expansion is quite different from the ex-
pansion of {Ford, Chevy}, and the difference is
one of Similar How, since whether a word (say,
BMW or FDR) belongs in the expansion depends
not just on how much commonality it shares with
Ford but on what commonality it shares. Conse-
quently, this task allows the same surface form to
belong to multiple sets, by virtue of being similar
to items in distinct sets for different reasons. The
facets along which items are similar is implicitly
defined by the members in the set.

In this paper, we propose a context sensitive
version of similarity based on highlighting shared
facets. We do this by developing a sparse repre-
sentation of words that simultaneously captures all
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facets of a given surface form. This allows us to
define a notion of contextual similarity, in which
Ford is similar to Chevy (e.g., when Audi or BMW
is in the context) but similar to Obama when Bush
or Nixon is in the context (i.e., in the seed list).
In fact, it can even support multi-granular similar-
ity since while {Chevy, Chrysler, Ford} represent
the facet of AMERICAN CARS, {Chevy, Audi, Ford}
define that of CARS. Our contextual similarity is
better able to mold itself to this variety since it
moves away from the one-size-fits-all nature of co-
sine similarity.

We exhibit the strength of the representation
and the contextual similarity metric we develop by
comparing its performance on both set expansion
and analogy problems with dense representations.

2 Senses and Facets

The present work does not attempt to resolve
the Word Sense Disambiguation (WSD) problem.
Rather, our goal is to advance a lexical represen-
tation and a corresponding context sensitive sim-
ilarity metric that, together, get around explicitly
solving WSD.

Polysemy is intimately tied to the well-explored
field of WSD so it is natural to expect techniques
from WSD to be relevant. If WSD could neatly
separate senses, the set expansion problem could
be approached thus. Ford would split into, say,
two senses: Ford-1 for the car, and Ford-2 for the
president, and expanding {Ford, Nixon} could be
translated to expanding {Ford-2, Nixon}. Such a
representational approach is taken by many au-
thors when they embed the different senses of
words as distinct points in an embedding space
(Reisinger and Mooney, 2010; Huang et al., 2012;
Neelakantan et al., 2014; Li and Jurafsky, 2015).

Such approaches run into what we term the
Fixed Inventory Problem. Either senses are ob-
tained from a hand curated resource such as a dic-
tionary, or are induced from the corpus directly
by mapping contexts clusters to different senses.
In either case, however, by the time the final rep-
resentation (e.g., the embedding) is obtained, the
number of different senses of each term has be-
come fixed: all decisions have been made relating
to how finely or coarsely to split senses.

How to split senses is a hard problem: dictionar-
ies such as NOAD list coarse senses and split these
further into fine senses, and it is unclear what gran-
ularity to use: should each fine sense correspond

to a point in the vector space, or should, instead,
each coarse sense map to a point? Many authors
(Hofstadter and Sander, 2013, for example) dis-
cuss how the various dictionary senses of a term
are not independent. Further, if context clusters
map to senses, the word whale, which is seen both
in mammal-like contexts (e.g., “whales have hair”)
and water-animal contexts (“whales swim”), could
get split into separate points. Thus, the different
senses that terms are split into may instead be dis-
tinct facets. This is not an idle theoretical worry:
such facet-based splitting is evident in Neelakan-
tan et al. (2014, Table 3). Similarly, in the vec-
tors they released, november splits into ten senses,
likely based on facets. Once split, for subsequent
processing, the points are independent.

In contrast to such explicit, prior, splitting, in
the Category Builder approach developed here,
relevant contexts are chosen given the task at hand,
and if multiple facets are relevant (as happens, for
example, in {whale, dolphin, seal}, whose expan-
sion should rank aquatic mammals highest), all
these facets influence the expansion; if only one
facet is of relevance (as happens in {whale, shark,
seahorse}), the irrelevant facets get ignored.

3 Related Work

In this section, we situate our approach within the
relevant research landscape. Both Set Expansion
and Analogies have a long history, and both de-
pend on Similarity, with an even longer history.

3.1 Set Expansion

Set Expansion is the well studied problem of ex-
panding a given set of terms by finding other se-
mantically related terms. Solutions fall into two
large families, differing on whether the expansion
is based on a preprocessed, limited corpus (Shen
et al., 2017, for example) or whether a much larger
corpus (such as the entire web) is accessed on de-
mand by making use of a search engine such as
Google (Wang and Cohen, 2007, for example).

Each family has its advantages and disadvan-
tages. “Open web” techniques that piggyback on
Google can have coverage deep into the tail. These
typically rely on some form of Wrapper Induc-
tion, and tend to work better for sets whose in-
stances show up in lists or other repeated structure
on the web, and thus perform much better on sets
of nouns than on sets of verbs or adjectives. By
contrast, “packaged” techniques that work off a
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preprocessed corpus are faster (no Google lookup
needed) and can work well for any part of speech,
but are of course limited to the corpus used. These
typically use some form of distributional similar-
ity, which can compute similarity between items
that have never been seen together in the same
document; approaches based on shared member-
ships in lists would need a sequence of overlap-
ping lists to achieve this. Our work is in the “pack-
aged” family, and we use sparse representations
used for distributional similarity.

Gyllensten and Sahlgren (2018) compares two
subfamilies within the packaged family: central-
ity-based methods use a prototype of the seeds
(say, the centroid) as a proxy for the entire seed
set and classification-based methods (a strict su-
perset), which produce a classifier by using the
seeds. Our approach is classification-based.

It is our goal to be able to expand nuanced
categories. For example, we want our solution
to expand the set {pluto, mickey}—both Disney
characters—to other Disney characters. That is,
the context mickey should determine what is con-
sidered ‘similar’ to pluto, rather than being biased
by the more dominant sense of pluto, to determine
that neptune is similar to it. Earlier approaches
such as Rong et al. (2016) approach this problem
differently: they expand to both planets and Dis-
ney characters, and then attempt to cluster the ex-
pansion into meaningful clusters.

3.2 Analogies

Solving analogy problems usually refers to pro-
portional analogies, such as hand:glove::foot:?.
Mikolov et al. (2013) showed how word embed-
dings such as Word2Vec capture linguistic regu-
larities and thereby solve this. Turney (2012) used
a pair of similarity functions (one for function and
one for domain) to address the same problem.

There is a sense, however, that the problem is
overdetermined: in many such problems, people
can solve it even if the first term is not shown.
That is, people easily answer “What is the glove
for the foot?”. People also answer questions such
as “What is the Ganga of Egypt?” without first
having to figure out the unprovided term India (or
is the missing term Asia? It doesn’t matter.) Hof-
stadter and Sander (2013) discuss how our ability
to do these analogies is central to cognition.

The current work aims to tackle these non-
proportional analogies and in fact performs bet-

ter than Word2Vec on some analogy classes used
by Mikolov et al. (2013), despite being shown one
fewer term.

The approach is rather close to that used by Tur-
ney (2012) for a different problem: word com-
pounds. Understanding what a dog house is can
be phrased as “What is the house of a dog?”, with
kennel being the correct answer. This is solved
using the pair of similarity functions mentioned
above. The evaluations provided in that paper
are for ranking: which of five provided terms is
a match. Here, we apply it to non-proportional
analogies and evaluate for retrieval, where we are
ranking over all words, a significantly more chal-
lenging problem.

To our knowledge, no one has presented a com-
putational model for analogies where only two
terms are provided. We note, however, that Linzen
(2016) briefly discusses this problem.

3.3 Similarity

Both Set Expansion and Analogies depend on a
notion of similarity. Set Expansion can be seen
as finding items most similar to a category, and
Analogies can be seen as directly dependent on
similarities (e.g., in the work of Turney (2012)).

Most current approaches, such as word embed-
dings, produce a context independent similarity. In
such an approach, the similarity between, say, king
and twin is some fixed value (such as their cosine
similarity). However, depending on whether we
are talking about bed sizes, these two items are ei-
ther closely related or completely unrelated, and
thus context dependent.

Psychologists and Philosophers of Language
have long pointed out that similarity is subtle.
It is sensitive to context and subject to prim-
ing effects. Even the very act of categorization
can change the perceived similarity between items
(Goldstone et al., 2001). Medin et al. (1993, p.
275) tell a story, from the experimental psychol-
ogy trenches, that supports representation morph-
ing when they conclude that “the effective rep-
resentations of constituents are determined in the
context of the comparison, not prior to it”.

Here we present a malleable notion of similar-
ity that can adapt to the wide range of human cat-
egories, some of which are based on narrow, su-
perficial similarities (e.g., BLUE THINGS) while oth-
ers share family resemblances (à la Wittgenstein).
Even in a small domain such as movies, in differ-
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ent contexts, similarity may be driven by who the
director is, or the cast, or the awards won. Fur-
thermore, to the extent that the contexts we use
are human readable, we also have a mechanism
for explaining what makes the terms similar.

There is a lot of work on the context-
dependence of human categories and similarities
in Philosophy, in Cognitive Anthropology and
in Experimental Psychology (Lakoff, 1987; Ellis,
1993; Agar, 1994; Goldstone et al., 2001; Hof-
stadter and Sander, 2013, for example, survey
this space from various theoretical standpoints),
but there are not, to our knowledge, unsupervised
computational models of these phenomena.

4 Representations and Algorithms

This section describes the representation and cor-
responding algorithms that perform set expansion
in Category Builder (CB).

4.1 Sparse Representations for Expansion

We use the traditional word representation that
distributional similarity uses (Turney and Pantel,
2010), and that is commonly used in fields such
as context sensitive spelling correction and gram-
matical correction (Golding and Roth, 1999; Ro-
zovskaya and Roth, 2014); namely,words are asso-
ciated with some ngrams that capture the contexts
in which they occur – all contexts are represented
in a sparse vector corresponding to a word. Fol-
lowing Levy and Goldberg (2014a), we call this
representation explicit.

Generating Representations. We start with
web pages and extract words and phrases from
these, as well as the contexts they appear in. An
aggregation step then calculates the strengths of
word to context and context to word associations.

Vocabulary. The vocabulary is made up of
words (nouns, verbs, adjectives, and adverbs) and
some multi-word phrases. To go beyond words,
we use a named entity recognizer to find multi-
word phrases such as New York. We also use one
heuristic rule to add certain phrasal verbs (e.g.,
take shower), when a verb is directly followed by
its direct object. We lowercase all phrases, and
drop those phrases seen infrequently. The set of
all words is called the vocabulary, V .

Contexts. Many kinds of contexts have been
used in literature. Levy (2018) provides a compre-
hensive overview. We use contexts derived from
syntactic parse trees using about a dozen heuris-

tic rules. For instance, one rule deals with nouns
modified by an adjective, say, red followed by
car. Here, one of the contexts of car is MODI-
FIEDBY#RED, and one of the contexts of red is
MODIFIES#CAR. Two more examples of contexts:
OBJECTOF#EAT and SUBJECTOF#WRITE. The
set of all contexts is denoted C.

The Two Vocabulary⇔Context matrices. For
vocabulary V and contextsC, we produce two ma-
trices, MV→C and MC→V . Many measures of as-
sociation between a word and a context have been
explored in the literature, usually based on some
variant of pointwise mutual information.

PPMI (Positive PMI) is the typically used mea-
sure. If P (w), P (c) and P (w, c) respectively rep-
resent the probabilities that a word is seen, a con-
text is seen and the word is seen in that context,
then

PMI(w, c) = log
P (w, c)

P (w)P (c)
(1)

PPMI(w, c) = max(0,PMI(w, c)) (2)

PPMI is widely used, but comments are in order
regarding the ad-hocness of the “0” in Equation 2.
There is seemingly a good reason to choose 0 as
a threshold: if a word is seen in a context more
than by chance, the PMI is positive, and a 0 thresh-
old seems sensible. However, in the presence of
polysemy, especially lopsided polysemy such as
Cancer (disease and star sign), a “0” threshold is
arbitrary: even if every single occurrence of the
star sign sense of cancer was seen in some con-
text c (thereby crying out for a high PMI), be-
cause of the rarity of that sense, the overall PMI
between c and (non-disambiguated) Cancer may
well be negative. Relatedly, Shifted PPMI (Levy
and Goldberg, 2014b) uses a non-0 cutoff.

Another well known problem with PPMI is its
large value when the word or the context is rare,
and even a single occurrence of a word-context
pair can bloat the PMI (see Role and Nadif, 2011,
for fixes that have been proposed). We introduce
a new variant we call Asymmetric PMI, which
takes frequency into account by adding a second
log term, and is asymmetric because in general
P (w|c) 6= P (c|w):

APMI(w, c) = PMI(w, c) + log
P (w, c)

P (w)

= log
P (w, c)2

P (w)2P (c)

(3)
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This is asymmetric because APMI(c, w) has
P (c) in the denominator of the extra log term.

What benefit does this modification to PMI pro-
vide? Consider a word and two associated con-
texts, c1 and c2, where the second context is sig-
nificantly rarer. Further, imagine that the PMI of
the word with either feature is the same. The word
would have been seen in the rarer context only a
few times, and this is more likely to have been a
statistical fluke. In this case, the APMI with the
more frequent term is higher: we reward the fact
that the PMI is high despite its prevalence; this is
less likely to be an artifact of chance.

Note that the rearranged expression seen in
the second line of Equation 3 is reminiscent of
PPMI0.75 from Levy et al. (2015).

The second log term in APMI is always nega-
tive, and we thus shift all values by a constant k
(chosen based on practical considerations of data
size: the smaller the k, the larger the size of the
sparse matrices; based on experimenting with vari-
ous values of k, it appears that expansion quality is
not very sensitive to k). Clipping this shifted value
at 0 produces Asymmetrical PPMI (APPMI):

APPMI(w, c) = max(0,APMI(w, c) + k) (4)

The two matrices thus produced are shown in
Equation 5. If we use PPMI instead of APPMI,
these are transposes of each other.

MV→Cw,c = APPMI(w, c)

MC→Vc,w = APPMI(c, w)
(5)

4.2 Focused Similarity and Set Expansion

We now come to the central idea of this paper:
the notion of focused similarity. Typically, simi-
larity is based on the dot product or cosine simi-
larity of the context vectors. The pairwise simi-
larity among all terms can be expressed as a ma-
trix multiplication as shown in Equation 6. Note
that if we had used PPMI in Equation 5, the ma-
trices would be each other’s transposes and each
entry in SimMatrix in Equation 6 would be the
dot-product-based similarity for a word pair.

SimMatrix =MC→VMV→C (6)

We introduce context weighting by inserting a
square matrix W between the two (see Equation
7). Similarity is unchanged if W is the identity
matrix. IfW is a non-identity diagonal matrix, this

is equivalent to treating some contexts as more im-
portant than others. It is by appropriately choosing
weights in W that we achieve the context depen-
dent similarity. If, for instance, all contexts other
than those indicative of cars are zeroed out in W ,
ford and obama will have no similarity.

SimMatrix =MC→VWMV→C (7)

4.3 Set Expansion via Matrix Multiplication

To expand a set of k seeds, we can construct the
k-hot column vector S with a 1 corresponding to
each seed, and a 0 elsewhere. Given S, we calcu-
late the focus matrix, WS . Then the expansion E
is a column vector that is just:

E =MC→VWSM
V→CS (8)

The score for a term in E is the sum of its fo-
cused similarity to each seed.

4.4 Motivating Our Choice of W

When expanding the set {taurus, cancer}—the set
of star signs, or perhaps the constellations—we are
faced with the presence of a polysemous term with
a lopsided polysemy. The disease sense is much
more prevalent than the star sign sense for cancer,
and the associated contexts are also unevenly dis-
tributed. If we attempt to use Equation 8 with the
identity matrix W , the expansion is dominated by
diseases.

The contexts we care about are those that are
shared. Note that restricting ourselves to the in-
tersection is not sensible, since if we are given
a dozen seeds it is entirely possible that they
share family resemblances and have a high pair-
wise overlap in contexts between any two seeds
but where there are almost no contexts shared by
all. We thus require a soft intersection, and this we
achieve by downweighting contexts based on what
fraction of the seeds are associated with that con-
text. The parameter ρ described in the next section
achieves this.

This modification helps, but it is not enough.
Each disease-related context for cancer is now
weakened, but their large number causes many
diseases to rank high in the expansion. To address
this, we can limit ourselves to only the top n con-
texts (typically, n = 100 is used). This way, if
the joint contexts are highly ranked, the expansion
will be based only on such contexts.
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input : S ⊂ V (seeds), ρ ∈ R (limited
support penalty), n ∈ N (context
footprint)

output: The diagonal matrix W .

1 for c ∈ C do
2 // Activation of the context.
3 a(c)←∑

w∈SM
V→C
w,c

4 // Fraction of S with context active
5 f(c)← fraction with MV→C∗,c > 0

6 // Score of context
7 s(c)← f(c)ρa(c)

8 end
9 Sort contexts by score s(c)

10 for c ∈ C do
11 if c one of n top-scoring contexts

then
12 Wc,c = f(c)ρ

13 end
14 end
Algorithm 1: Calculating context focus

The {taurus, cancer} example is useful to point
out the benefits of an asymmetric association mea-
sure. Given cancer, the notion of star sign is not
highly activated, and rightly so. If w is cancer and
c is BORN UNDER X, then PPMI(w, c) is low
(as is APPMI(w, c)). However, APPMI(c, w)
is quite high, allowing us to highly score cancer
when expanding {taurus, aries}.

4.5 Details of Calculating W

To produce W , we provide the seeds and two pa-
rameters: ρ ∈ R (the limited support penalty) and
n ∈ N (the context footprint). Algorithm 1 pro-
vides the pseudo-code.

First, we score contexts by their activation (line
3). We penalize contexts that are not supported by
all the seeds: we produce the score by multiply-
ing activation by fρ, where f is the fraction of the
seeds supporting that context (lines 5 and 7). Only
the n top scoring contexts will have non-zero val-
ues in W , and these get the value fρ.

This notion of weighting contexts is similar to
that used in the SetExpan framework (Shen et al.,
2017), although the way they use it is different
(they use weighted Jaccard similarity based on
context weights). Their algorithm for calculating
context weights is a special case of our algorithm,
with no notion of limited support penalty, that is,
they use ρ = 0.

4.6 Sparse Representations for Analogies

To solve the analogy problem “What is the Ganga
of Egypt?” we are looking for something that is
like Ganga (this we can obtain via the set expan-
sion of the (singleton) set {Ganga}, as described
above) and that we see often with Egypt, or to
use Turney’s terminology, in the same domain as
Egypt.

To find terms that are in the same domain as
a given term, we use the same statistical tools,
merely with a different set of contexts. The con-
text for a term is other terms in the same sen-
tence. With this alternate definition of context, we
produce DC→V exactly analogous to MC→V from
Equation 5.

However, if we define DV→C analogous to
MV→C and use these matrices for expansion, we
run into unintended consequences since expand-
ing {evolution} provides not what things evolu-
tion is seen with, but rather those things that cooc-
cur with what evolution co-occurs with. Since,
for example, both evolution and number co-occur
with theory, the two would appear related. To get
around this, we zero out most non-diagonal entries
inDV→C . The only off diagonal entries that we do
not zero out are those corresponding to word pairs
that seem to share a lemma (which we heuristi-
cally define as “share more than 80% of the pre-
fix”. Future work will explore using lemmas). An
example of a pair we retain is india and indian),
since when we are looking for items that co-occur
with india we actually want those that occur with
related words forms. An illustration for why this
matters: India and Rupee occur together rarely
(with a negative PMI) whereas Indian and Rupee
have a strong positive PMI.

4.7 Finding Analogies

To answer “What is the Ganga of Egypt”, we use
Equation 8 on the singleton set {ganga}, and the
same equation (but with DV→C and DC→V ) on
{egypt}. We intersect the two lists by combining
the score of the shared terms in squash space (i.e.,
if the two scores are m and d, the combined score
is

100m

99 +m
+

100d

99 + d
(9)
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5 Set Expansion Experiments and
Evaluation

5.1 Experimental Setup

We report data on two different corpora.
The Comparison Corpus. We begin with

20 million English web pages randomly sampled
from a set of popular web pages (high pagerank
according to Google). We run Word2Vec on the
text of these pages, producing a 200 dimensional
embeddings. We also produce MV→C and MC→V

according to Equation 5. We use this corpus to
compare Category Builder with Word2Vec-based
techniques. Note that these web-pages may be
noisier than Wikipedia. Word2Vec was chosen be-
cause it was deemed “comparable”: mathemati-
cally, it is an implicit factorization of the PMI ma-
trix (Levy and Goldberg, 2014b).

Release Corpus. We also ran Category Builder
on a much larger corpus. The generated matri-
ces are restricted to the most common words and
phrases (around 200,000). The matrices and asso-
ciated code are publicly available1.

Using Word2Vec for Set Expansion. Two
classes of techniques are considered, representing
members of both families described by Gyllensten
and Sahlgren (2018). The centroid method finds
the centroid of the seeds and expands to its neigh-
bors based on cosine similarity. The other meth-
ods first find similarity of a candidate to each seed,
and combines these scores using arithmetic, geo-
metric, and harmonic means.

Mean Average Precision (MAP). MAP com-
bines both precision and recall into a sin-
gle number. The gold data to evaluate
against is presented as sets of synsets, e.g.,
{{California,CA}, {Indiana, IN}, . . .}.

An expansion L consists of an ordered list of
terms (which may include the seeds). Define
Preci(L) to be the fraction of items in the first i
items inL that belong to at least one golden synset.
We can also speak of the precision at a synset,
PrecS(L) = Precj(L), where j is the smallest
index where an element in S was seen in L. If
no element in the synset S was ever seen, then
PrecS = 0. MAP(L) = avg(PrecS(L)) is the
average precision over all synsets.

Generalizations of MAP. While MAP is an ex-
cellent choice for closed sets (such as U.S. STATES),
it is less applicable to open sets (say, POLITICAL

1https://github.com/google/categorybuilder

IDEOLOGIES or SCIENTISTS). For such cases, we pro-
pose a generalization of MAP that preserves its at-
tractive properties of combining precision and re-
call while accounting for variant names. The pro-
posed score is MAPn(L), which is the average of
precision for the first n synsets seen. That it is a
strict generalization of MAP can be seen by ob-
serving that in the case of US STATES, MAP(L) ≡
MAP50(L).

5.2 Evaluation Sets

We produced three evaluation sets, two closed
and one open. For closed sets, following Wang
and Cohen (2007), we use US States and Na-
tional Football League teams. To increase the dif-
ficulty, for NFL teams, we do not use as seeds
dismabiguated names such as Detroit Lions or
Green Bay Packers, instead using the polysemous
lions and packers. The synsets were produced by
adding all variant names for the teams. For exam-
ple, Atlanta Falcons are also known as falcs, and
so this was added to the synset.

For the open set, we use verbs that indicate
things breaking or failing in some way. We chose
ten popular instances (e.g., break, chip, shatter)
and these act as seeds. We expanded the set by
manual evaluation: any correct item produced by
any of the evaluated systems was added to the list.
There is an element of subjectivity here, and we
therefore provide the lists used (Appendix A.1).

5.3 Evaluation

For each evaluation set, we did 50 set expansions,
each starting with three randomly selected seeds.

Effect of ρ and APPMI. Table 1 reveals that
APPMI performs better than PPMI — signifi-
cantly better on two sets, and slightly worse on
one. Penalizing contexts that are not shared by
most seeds (i.e., using ρ > 0) also has a marked
positive effect.

Effect of n. Table 2 reveals a curious effect. As
we increase n, for US STATES, performance drops
somewhat but for BREAK VERBS it improves quite a
bit. Our analysis shows that pinning down what
a state is can be done with very few contexts,
and other shared contexts (such as LIVE IN X)
are shared also with semantically related entities
such as states in other countries. At the other end,
BREAK VERBS is based on a large number of shared
contexts and using more contexts is beneficial.
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Technique US NFL Break
States Teams Verbs

W2V HM .858 .528 .231
W2V GM .864 .589 .273
W2V AM .852 .653 .332
W2V Centroid .851 .646 .337
CB:PPMI; ρ = 0 .918 .473 .248
CB:PPMI; ρ = 3 .922 .612 .393
CB:APPMI; ρ = 0 .900 .584 .402
CB:APPMI; ρ = 3 .907 .735 .499
CB:Release Data† .959 .999 .797

Table 1: MAP scores on three categories. The first four
rows use various techniques with Word2Vec. The next
four demonstrate Category Builder built on the same
corpus, to show the effect of ρ and association measure
used. For all four Category Builder rows, we used n =
100. Both increasing ρ and switching to APPMI can be
seen to be individually and jointly beneficial. †The last
line reports the score on a different corpus, the release
data, with APPMI and ρ = 3, n = 100.

5 10 30 50 100 500
US States .932 .925 .907 .909 .907 .903
NFL .699 .726 .731 .734 .735 .733
Break Verbs .339 .407 .477 .485 .496 .511

Table 2: Effect of varying n. APPMI with ρ = 3.

5.4 Error Analysis.

Table 3 shows the top errors in expansion. The
kinds of drifts seen in the two cases are revealing.
Category Builder picks up word fragments (e.g.,
because of the US State New Mexico, it expanded
states to include Mexico). It sometimes expands
to a hypernym (e.g., province) or siblings (e.g.,
instead of Football teams sometimes it got other
sport teams). With Word2Vec, we see similar er-
rors (such as expanding to the semantically similar
southern california).

5.5 Qualitative Demonstration

Table 4 shows a few examples of expanding cate-
gories, with ρ = 3, n = 100.

Table 5 illustrates the power of Category
Builder by considering a a synthetic corpus pro-
duced by replacing all instances of cat and denver
into the hypothetical CatDenver. This illustrates
that even without explicit WSD (that is, separat-
ing CatDenver to its two “senses”, we are able
to expand correctly given an appropriate context.
To complete the picture, we note that expanding
{kitten, dog} as well as {atlanta, phoenix} con-
tains CatDenver, as expected.

Set Method Top Errors

US States W2V southern california; east tennessee;
seattle washington

CB carolina; hampshire; dakota; on-
tario; jersey; province

NFL W2V hawks; pelicans; tigers; nfl; quar-
terbacks; sooners

CB yankees; sox; braves; mets; knicks;
rangers, lakers

Table 3: Error analysis for US States and NFL. Arith-
metic Mean method is used for W2V and ρ = 3 and
APPMI for Category Builder

Seeds CB Expansion, ρ = 3, n = 100
ford,
nixon

nixon, ford, obama, clinton, bush, richard
nixon, reagan, roosevelt, barack obama, bill
clinton, ronald reagan, w. bush, eisenhower

ford,
chevy

ford, chevy, chevrolet, toyota, honda, nissan,
bmw, hyundai, volkswagen, audi, chrysler,
mazda, volvo, gm, kia, subaru, cadillac

ford,
depp

ford, depp, johnny depp, harrison ford, di-
caprio, tom cruise, pitt, khan, brad pitt, hanks,
tom hanks, leonardo dicaprio

safari,
trip†

trip, safari, tour, trips, cruise, adventure, ex-
cursion, vacation, holiday, road trip, expedi-
tion, trek, tours, safaris, journey,

safari,
ie†

safari, ie, firefox, internet explorer, chrome,
explorer, browsers, google chrome, web
browser, browser, mozilla firefox

Table 4: Expansion examples using Category Builder
so as to illustrate its ability to deal with Polysemy. †

For these examples, ρ = 5

6 Analogies

6.1 Experimental Setup

We evaluated the analogy examples used by
Mikolov et al. (2013). Category Builder eval-
uation were done by expanding using syntactic
and sentence-based-cooccurrence contexts as de-
tailed in Section 4.6 and scoring items according
to Equation 9. For evaluating using Word2Vec, the
standard vector arithmetic was used.

In both cases, the input terms from the prob-
lem were removed from candidate answers (as was
done in the original paper). Linzen (2016) pro-
vides analysis and rationales for why this is done.

6.2 Evaluation

Table 6 provides the evaluations. A few words
are in order for the difference between the pub-
lished scores for Word2Vec analogies elsewhere
(e.g., Linzen, 2016). Their reported numbers for
common capitals were around 91%, as opposed to
around 87% here. Where as Wikipedia is typically
used as a corpus, that was not the case here. Our
corpus is noisier, and may not have the same level
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Seeds CB Expansion, ρ = 3, n = 100
CatDenver,
dog

dogs, cats, puppy, pet, rabbit, kitten, ani-
mal, animals, pup, pets, puppies, horse

CatDenver,
phoenix

chicago, atlanta, seattle, dallas, boston,
portland, angeles, los angeles

CatDenver,
TigerAndroid

cats, lion, dog, tigers, kitten, animal,
dragon, wolf, dogs, bear, leopard, rabbit

Table 5: Expansion examples with synthetic polysemy
by replacing all instances of cat and denver into the
hypothetical CatDenver (similarly, TigerAndroid). A
single other term is enough to pick out the right sense.

a:b::c:? Harder :b::c:?(a withheld)
Method W2V CB:APPMI
Corpus Comp Comp Release†

common capitals .872 .957 .941
city-in-state .657 .972 .955
currency .030 .037 .122
nationality .515 .615 .655
world capitals .472 .789 .668
family .617 .217 .306

Table 6: Performance on Analogy classes from
Mikolov et al. (2013). The first two columns are de-
rived from the same corpus, whereas the last column
reports numbers on the data we will release. For cate-
gory builder, we used ρ = 3, n = 100

of country-based factual coverage as Wikipedia,
and almost all non-grammar based analogy prob-
lems are of that nature.

A second matter to point out is why grammar
based rows are missing from Table 6. Grammar
based analogy classes cannot be solved with just
two terms. For boy:boys::king:?, dropping the first
term boy takes away information crucial to the
solution in a way that dropping the first term of
US:dollar::India:? does not. The same is true for
the family class of analogies.

6.3 Qualitative Demonstration
Table 7 provides a sampler of analogies solved us-
ing Category Builder.

7 Limitations

Much work remains, of course. The analogy work
presented here (and also the corresponding work
using vector offsets) is no match for the sub-
tlety that people can bring to bear when they see
deep connections via analogy. Some progress here
could come from the ability to discover and use
more semantically meaningful contexts.

There is currently no mechanism to automati-
cally choose n and ρ. Standard settings of n =
100 and ρ = 3 work well for the many appli-
cations we use it for, but clearly there are cate-

term1 term2 What is the term1 of term2?
voldemort tolkien sauron
voldemort star wars vader

ganga egypt nile
dollar india rupee

football india cricket
civic toyota corolla

Table 7: A sampler of analogies solved by Category
Builder.

gories that benefit from very small n (such as BLUE

THINGS) or very large n. Similarly, as can be seen
in Equation 9, analogy also uses a parameter for
combining the results, with no automated way yet
to choose it. Future work will prioritize this.

The current work suggests, we believe, that it
is beneficial to not collapse the large dimensional
sparse vector space that implicitly underlies many
embeddings. Having the ability to separately ma-
nipulate contexts can help differentiate between
items that differ on that context. That said, the
smoothing and generalization that dimensionality
reduction provides has its uses, so finding a com-
bined solution might be best.

8 Conclusions

Given that natural categories vary in their degree
of similarities and their kinds of coherence, we be-
lieve that solutions that can adapt to these would
perform better than context independent notions of
similarity.

As we have shown, Category Builder displays
the ability to implicitly deal with polysemy and
determine similarity in a context sensitive manner,
as exhibited in its ability to expand a set by latch-
ing on to what is common among the seeds.

In developing it we proposed a new measure
of association between words and contexts and
demonstrated its utility in set expansion and a hard
version of the analogy problem. In particular, our
results show that sparse representations deserve
additional careful study.
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A Supplemental Material

A.1 Lists Used in Evaluating Set Expansion

US States. Any of the 50 states could be used as
a seed. The 50 golden synsets were the 50 pairs
of state name and abbreviation (e.g., {California,
CA}).

NFL Teams. Any of the first terms
in these 32 synsets could be used as a
seed. The golden synsets are: {Bills, Buf-
falo Bills}, {Dolphins, Miami Dolphins, Phins},
{Patriots, New England Patriots, Pats}, {Jets,
New York Jets}, {Ravens, Baltimore Ravens},
{Bengals, Cincinnati Bengals}, {Browns, Cleve-
land Browns}, {Steelers, Pittsburgh Steelers},
{Texans, Houston Texans}, {Colts, Indianapo-
lis Colts}, {Jaguars, Jacksonville Jaguars, Jags},
{Titans, Tennessee Titans}, {Broncos, Den-
ver Broncos}, {Chiefs, Kansas City Chiefs},
{Chargers, Los Angeles Chargers}, {Raiders,
Oakland Raiders}, {Cowboys, Dallas Cowboys},
{Giants, New York Giants}, {Eagles, Philadel-
phia Eagles}, {Redskins, Washington Redskins},
{Bears, Chicago Bears}, {Lions, Detroit Lions},
{Packers, Green Bay Packers}, {Vikings, Min-
nesota Vikings, Vikes}, {Falcons, Atlanta Falcons,
Falcs}, {Panthers, Carolina Panthers}, {Saints,
New Orleans Saints}, {Buccaneers, Tampa Bay
Buccaneers, Bucs}, {Cardinals, Arizona Cardi-
nals}, {Rams, Los Angeles Rams}, {49ers, San
Francisco 49ers, Niners}, and {Seahawks, Seattle
Seahawks}

Break Verbs. Seeds are chosen from among
these ten items: break, chip, shatter, rot, melt,
scratch, crush, smash, rip, fade. Evaluation is
done for MAP30 (see Section 5.1). The follow-
ing items are accepted in the expansion: break
up, break down, tip over, splinter, tear, come off,

crack, disintegrate, deform, crumble, burn, dis-
solve, bend, chop, stain, destroy, smudge, tarnish,
explode, derail, deflate, corrode, trample, ruin,
suffocate, obliterate, topple, scorch, crumple, pul-
verize, fall off, cut, dry out, split, deteriorate, hit,
blow, damage, wear out, peel, warp, shrink, evap-
orate, implode, scrape, sink, harden, abrade, un-
hinge, erode, calcify, vaporize, sag, shred, de-
grade, collapse, annihilate. In the synsets, we also
added the morphological variants (e.g., {break,
breaking, broke, breaks}).

A.2 Word2Vec Model Details
The word2vec model on the “comparison corpus”
created 200 dimensional word embeddings. We
used a skip-gram model with a batch size of 100,
a vocabulary of 600k ngrams, and negative sam-
pling with 100 examples. It was trained using a
learning rate of 0.2 with Adagrad optimizer for 70
million steps.
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