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Abstract

We study the problem of measuring the qual-
ity of automatically-generated stories. We fo-
cus on the setting in which a few sentences of
a story are provided and the task is to generate
the next sentence (“continuation”) in the story.
We seek to identify what makes a story con-
tinuation interesting, relevant, and have high
overall quality. We crowdsource annotations
along these three criteria for the outputs of
story continuation systems, design features,
and train models to predict the annotations.
Our trained scorer can be used as a rich feature
function for story generation, a reward func-
tion for systems that use reinforcement learn-
ing to learn to generate stories, and as a partial
evaluation metric for story generation.

1 Introduction

We study the problem of automatic story gen-
eration in the climate of neural network natu-
ral language generation methods. Story genera-
tion (Mani, 2012; Gervás, 2012) has a long his-
tory, beginning with rule-based systems in the
1970s (Klein et al., 1973; Meehan, 1977). Most
story generation research has focused on mod-
eling the plot, characters, and primary action of
the story, using simplistic methods for producing
the actual linguistic form of the stories (Turner,
1993; Riedl and Young, 2010). More recent work
learns from data how to generate stories holisti-
cally without a clear separation between content
selection and surface realization (McIntyre and
Lapata, 2009), with a few recent methods based
on recurrent neural networks (Roemmele and Gor-
don, 2015; Huang et al., 2016).

We follow the latter style and focus on a setting
in which a few sentences of a story are provided
(the context) and the task is to generate the next
sentence in the story (the continuation). Our goal

is to produce continuations that are both interest-
ing and relevant given the context.

Neural networks are increasingly employed
for natural language generation, most often with
encoder-decoder architectures based on recurrent
neural networks (Cho et al., 2014; Sutskever et al.,
2014). However, while neural methods are effec-
tive for generation of individual sentences condi-
tioned on some context, they struggle with coher-
ence when used to generate longer texts (Kiddon
et al., 2016). In addition, it is challenging to apply
neural models in less constrained generation tasks
with many valid solutions, such as open-domain
dialogue and story continuation.

The story continuation task is difficult to formu-
late and evaluate because there can be a wide va-
riety of reasonable continuations for typical story
contexts. This is also the case in open-domain dia-
logue systems, in which common evaluation met-
rics like BLEU (Papineni et al., 2002) are only
weakly correlated with human judgments (Liu
et al., 2016). Another problem with metrics like
BLEU is the dependence on a gold standard. In
story generation and open-domain dialogue, there
can be several equally good continuations for any
given context which suggests that the quality of
a continuation should be computable without re-
liance on a gold standard.

In this paper, we study the question of iden-
tifying the characteristics of a good continuation
for a given context. We begin by building sev-
eral story generation systems that generate a con-
tinuation from a context. We develop simple
systems based on recurrent neural networks and
similarity-based retrieval and train them on the
ROC story dataset (Mostafazadeh et al., 2016). We
use crowdsourcing to collect annotations of the
quality of the continuations without revealing the
gold standard. We ask annotators to judge continu-
ations along three distinct criteria: overall quality,
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relevance, and interestingness. We collect mul-
tiple annotations for 4586 context/continuation
pairs. These annotations permit us to compare
methods for story generation and to study the re-
lationships among the criteria. We analyze our an-
notated dataset by developing features of the con-
text and continuation and measuring their correla-
tion with each criterion.

We combine these features with neural net-
works to build models that predict the human
scores, thus attempting to automate the process
of human quality judgment. We find that our
predicted scores correlate well with human judg-
ments, especially when using our full feature set.
Our scorer can be used as a rich feature function
for story generation or a reward function for sys-
tems that use reinforcement learning to learn to
generate stories. It can also be used as a partial
evaluation metric for story generation.1 Examples
of contexts, generated continuations, and quality
predictions from our scorer are shown in Table 3.
The annotated data and trained scorer are available
at the authors’ websites.

2 Related Work

Research in automatic story generation has a long
history, with early efforts driven primarily by
hand-written rules (Klein et al., 1973; Meehan,
1977; Dehn, 1981; Lebowitz, 1985; Turner, 1993),
often drawing from theoretical analysis of sto-
ries (Propp, 1968; Schank and Abelson, 1975;
Thorndyke, 1977; Wilensky, 1983). Later meth-
ods were based on various methods of planning
from artificial intelligence (Theune et al., 2003;
Oinonen et al., 2006; Riedl and Young, 2010)
or commonsense knowledge resources (Liu and
Singh, 2002; Winston, 2014). A detailed summary
of this earlier work is beyond our scope; for sur-
veys, please see Mani (2012), Gervás (2012), or
Gatt and Krahmer (2017).

More recent work in story generation has fo-
cused on data-driven methods (McIntyre and La-
pata, 2009, 2010; McIntyre, 2011; Elson, 2012;
Daza et al., 2016; Roemmele, 2016). The gener-
ation problem is often constrained via anchoring
to some other input, such as a topic or list of key-
words (McIntyre and Lapata, 2009), a sequence
of images (Huang et al., 2016), a set of loosely-

1However, since our scorer does not use a gold standard,
it is possible to “game” the metric by directly optimizing the
predicted score, so if used as an evaluation metric, it should
still be validated with a small-scale manual evaluation.

connected sentences (Jain et al., 2017), or settings
in which a user and agent take turns adding sen-
tences to a story (Swanson and Gordon, 2012;
Roemmele and Gordon, 2015; Roemmele, 2016).

Our annotation criteria—relevance, interesting-
ness, and overall quality—are inspired by those
from prior work. McIntyre and Lapata (2009) sim-
ilarly obtain annotations for story interestingness.
They capture coherence in generated stories by us-
ing an automatic method based on sentence shuf-
fling. We discuss the relationship between rele-
vance and coherence below in Section 3.2.

Roemmele et al. (2017) use automated linguis-
tic analysis to evaluate story generation systems.
They explore the various factors that affect the
quality of a story by measuring feature values for
different story generation systems, but they do not
obtain any quality annotations as we do here.

Since there is little work in automatic evalua-
tion of story generation, we can turn to the related
task of open-domain dialogue. Evaluation of dia-
logue systems often uses perplexity or metrics like
BLEU (Papineni et al., 2002), but Liu et al. (2016)
show that most common evaluation metrics for di-
alog systems are correlated very weakly with hu-
man judgments. Lowe et al. (2017) develop an au-
tomatic metric for dialog evaluation by training a
model to predict crowdsourced quality judgments.
While this idea is very similar to our work, one
key difference is that their annotators were shown
both system outputs and the gold standard for each
context. We fear this can bias the annotations by
turning them into a measure of similarity to the
gold standard, so we do not show the gold stan-
dard to annotators.

Wang et al. (2017) use crowdsourcing (upvotes
on Quora) to obtain quality judgments for short
stories and train models to predict them. One dif-
ference is that we obtain annotations for three dis-
tinct criteria, while they only use upvotes. An-
other difference is that we collect annotations for
both manually-written continuations and a range
of system-generated continuations, with the goal
of using our annotations to train a scorer that can
be used within training.

3 Data Collection

Our goal is to collect annotations of the quality of
a sentence in a story given its preceding sentences.
We use the term context to refer to the preced-
ing sentences and continuation to refer to the next
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sentence being generated and evaluated. We now
describe how we obtain 〈context, continuation〉
pairs from automatic and human-written stories
for crowdsourcing quality judgments.

We use the ROC story corpus (Mostafazadeh
et al., 2016), which contains 5-sentence stories
about everyday events. We use the initial data re-
lease of 45,502 stories. The first 45,002 stories
form our training set (TRAIN) for story generation
models and the last 500 stories form our develop-
ment set (DEV) for tuning hyperparameters while
training story generation models. For collecting
annotations, we compile a dataset of 4586 context-
continuation pairs, drawing contexts from DEV as
well as the 1871-story validation set from the ROC
Story Cloze task (Mostafazadeh et al., 2016).

For contexts, we use 3- and 4-sentence prefixes
from the stories in this set of 4586. We use both 3
and 4 sentence contexts as we do not want our an-
notated dataset to include only story endings (for
the 4-sentence contexts, the original 5th sentence
is the ending of the story) but also more general in-
stances of story continuation. We did not use 1 or
2 sentence contexts because we consider the space
of possible continuations for these short contexts
to be too unconstrained and thus it would be diffi-
cult for both systems and annotators.

We generated continuations for each context us-
ing a variety of systems (described in Section 3.1)
as well as simply taking the human-written contin-
uation from the original story. We then obtained
annotations for the continuation with its context
via crowdsourcing, described in Section 3.2.

3.1 Story Continuation Systems

In order to generate a dataset with a range of
qualities, we consider six ways of generating the
continuation of the story, four based on neu-
ral sequence-to-sequence models and two using
human-written sentences. To lessen the possibil-
ity of annotators seeing the same context multiple
times, which could bias the annotations, we used
at most two methods out of six for generating the
continuation for a particular context.

3.1.1 Sequence-to-Sequence Models
We used a standard sequence-to-sequence
(SEQ2SEQ) neural network model (Sutskever
et al., 2014) to generate continuations given
contexts. We trained the models on TRAIN and
tuned on DEV. We generated 180,008 〈context,
continuation〉 pairs from TRAIN, where the contin-

uation is always a single sentence and the context
consists of all previous sentences in the story.
We trained a 3-layer bidirectional SEQ2SEQ

model, with each layer having hidden vector
dimensionality 1024. The size of the vocabulary
was 31,220. We used scheduled sampling (Bengio
et al., 2015), using the previous ground truth word
in the decoder with probability 0.5t, where t is the
index of the mini-batch processed during training.
We trained the model for 20,000 epochs with a
batch size of 100. We began training the model
on consecutive sentence pairs (so the context was
only a single sentence), then shifted to training on
full story contexts.

We considered four different methods for the
decoding function of our SEQ2SEQ model:

• SEQ2SEQ-GREEDY: return the highest-scoring
output under greedy (argmax) decoding.

• SEQ2SEQ-DIV: return the kth-best output us-
ing a diverse beam search (Vijayakumar et al.,
2016) with beam size k = 10.

• SEQ2SEQ-SAMPLE: sample words from the
distribution over output words at each step us-
ing a temperature parameter τ = 0.4.

• SEQ2SEQ-REVERSE: reverse input sequence
(at test time only) and use greedy decoding.

Each decoding rule contributes one eighth of
the total data generated for annotation, so the
SEQ2SEQ models account for one half of the
〈context, continuation〉 pairs to be annotated.

3.1.2 Human Generated Outputs
For human generated continuations, we use two
methods. The first is simply the gold standard con-
tinuation from the ROC stories dataset, which we
call HUMAN. The second finds the most similar
context in the ROC training corpus, then returns
the continuation for that context. To compute sim-
ilarity between contexts, we use the sum of two
similarity scores: BLEU score (Papineni et al.,
2002) and the overall sentence similarity described
by Li et al. (2006). Since this method is similar
to an information retrieval-based story generation
system, we refer to it as RETRIEVAL. HUMAN and
RETRIEVAL each contribute a fourth of the total
data generated for annotation.

3.2 Crowdsourcing Annotations
We used Amazon Mechanical Turk to collect an-
notations of continuations paired with their con-
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texts. We collected annotations for 4586 context-
continuation pairs, collecting the following three
criteria for each pair:

• Overall quality (O): a subjective judgment by
the annotator of the quality of the continuation,
i.e., roughly how much the annotator thinks the
continuation adds to the story.

• Relevance (R): a measure of how relevant the
continuation is to the context. This addresses
the question of whether the continuation fits
within the world of the story.

• Interestingness (I): a measure of the amount of
new (but still relevant) information added to the
story. We use this to measure whether the con-
tinuation makes the story more interesting.

Our criteria follow McIntyre and Lapata (2009)
who used interestingness and coherence as two
quality criteria for story generation. Our notion
of relevance is closely related to coherence; when
thinking of judging a continuation, we believed
that it would be more natural for annotators to
judge the relevance of the continuation to its con-
text, rather than judging the coherence of the re-
sulting story. That is, coherence is a property of a
discourse, while relevance is a property of a con-
tinuation (in relation to the context).

Our overall quality score was intended to cap-
ture any remaining factors that determine human
quality judgment. In preliminary annotation ex-
periments, we found that the overall score tended
to capture a notion of fluency/grammaticality,
hence we decided not to annotate this criterion
separately. We asked annotators to forgive minor
ungrammaticalities in the continuations and rate
them as long as they could be understood. If an-
notators could not understand the continuation, we
asked them to assign a score of 0 for all criteria.

We asked the workers to rate the continuations
on a scale of 1 to 10, with 10 being the high-
est score. We obtained annotations from two dis-
tinct annotators for each pair and for each crite-
rion, adding up to a total of 4586×2×3 = 27516
judgments. We asked annotators to annotate all
three criteria for a given pair simultaneously in
one HIT.2 We required workers to be located in
the United States, to have a HIT approval rating

2In a preliminary study, we experimented with asking for
each criterion separately to avoid accidental correlation of the
criteria, but found that it greatly reduced cumulative cognitive
load for each annotator to do all three together.

Criterion Mean Std. IA MAD IA SDAD
Overall 5.2 2.5 2.1 1.6
Relevance 5.2 3.0 2.3 1.8
Interestingness 4.6 2.5 2.1 1.9

Table 1: Means and standard deviations for each cri-
terion, as well as inter-annotator (IA) mean absolute
differences (MAD) and standard deviations of absolute
differences (SDAD).

greater than 97%, and to have had at least 500
HITs approved. We paid $0.08 per HIT. Since
task duration can be difficult to estimate from
HIT times (due to workers becoming distracted or
working on multiple HITs simultaneously), we re-
port the top 5 modes of the time duration data in
seconds. For pairs with 3 sentences in the context,
the most frequent durations are 11, 15, 14, 17, and
21 seconds. For 4 sentences, the most frequent du-
rations are 18, 20, 19, 21, and 23 seconds.

We required each worker to annotate no more
than 150 continuations so as not to bias the data
collected. After collecting all annotations, we ad-
justed the scores to account for how harshly or le-
niently each worker scored the sentences on av-
erage. We did this by normalizing each score by
the absolute value of the difference between the
worker’s mean score and the average mean score
of all workers for each criterion. We only normal-
ized scores of workers who annotated more than
10 pairs in order to ensure reliable worker means.
We then averaged the two adjusted sets of scores
for each pair to get a single set of scores.

4 Dataset Analysis

Table 1 shows means and standard deviations for
the three criteria. The means are similar across the
three, though interestingness has the lowest, which
aligns with our expectations of the ROC stories.
For measuring inter-annotator agreement, we con-
sider the mean absolute difference (MAD) of the
two judgments for each pair.3 Table 1 shows the
MADs for each criterion and the corresponding
standard deviations (SDAD). Overall quality and
interestingness showed slightly lower MADs than
relevance, though all three criteria are similar.

The average scores for each data source are
shown in Table 2. The ranking of the systems is

3Cohen’s Kappa is not appropriate for our data because,
while we obtained two annotations for each pair, they were
not always from the same pair of annotators. In this case,
an annotator-agnostic metric like MAD (and its associated
standard deviation) is a better measure of agreement.
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System # O R I
SEQ2SEQ-GREEDY 596 4.18 4.09 3.81
SEQ2SEQ-DIV 584 3.36 3.50 3.00
SEQ2SEQ-SAMPLE 578 3.69 3.70 3.42
SEQ2SEQ-REVERSE 577 4.61 4.39 4.02
RETRIEVAL 1086 5.68 4.93 5.15
HUMAN 1165 7.22 8.05 6.33

Table 2: Average criteria scores for each system (O =
overall, R = relevance, I = interestingness).

consistent across criteria. Human-written contin-
uations are best under all three criteria. The HU-
MAN relevance average is higher than interesting-
ness. This matches our intuitions about the ROC
corpus: the stories were written to capture com-
monsense knowledge about everyday events rather
than to be particularly surprising or interesting sto-
ries in their own right. Nonetheless, we do find
that the HUMAN continuations have higher inter-
estingness scores than all automatic systems.

The RETRIEVAL system actually outperforms
all SEQ2SEQ systems on all criteria, though the
gap is smallest on relevance. We found that the
SEQ2SEQ systems often produced continuations
that fit topically within the world suggested by
the context, though they were often generic or
merely topically relevant without necessarily mov-
ing the story forward. We found S2S-GREEDY

produced outputs that were grammatical and rele-
vant but tended to be more mundane whereas S2S-
REVERSE tended to produce slightly more inter-
esting outputs that were still grammatical and rel-
evant on average. The sampling and diverse beam
search outputs were frequently ungrammatical and
therefore suffer under all criteria.

We show sample outputs from the different sys-
tems in Table 3. We also show predicted criteria
scores from our final automatic scoring model (see
Section 6 for details). We show predicted rather
than annotated scores here because for a given
context, we did not obtain annotations for all con-
tinuations for that context. We can see some of the
characteristics of the different models and under-
stand how their outputs differ. The RETRIEVAL

outputs are sometimes more interesting than the
HUMAN outputs, though they often mention new
entities that were not contained in the context, or
they may be merely topically related to the context
without necessarily resulting in a coherent story.
This affects interestingness as well, as a continua-
tion must first be relevant in order to be interesting.

4.1 Relationships Among Criteria
Table 4 shows correlations among the criteria for
different sets of outputs. RETRIEVAL outputs
show a lower correlation between overall score
and interestingness than HUMAN outputs. This is
likely because the RETRIEVAL outputs with high
interestingness scores frequently contained more
surprising content such as new character names
or new actions/events that were not found in the
context. Therefore, a high interestingness score
was not as strongly correlated with overall qual-
ity as with HUMAN outputs, for which interesting
continuations were less likely to contain erroneous
new material.

HUMAN continuations have a lower correlation
between relevance and interestingness than the
RETRIEVAL or SEQ2SEQ models. This is likely
because nearly all HUMAN outputs are relevant, so
their interestingness does not depend on their rel-
evance. For SEQ2SEQ, the continuations can only
be interesting if they are first somewhat relevant to
the context; nonsensical output was rarely anno-
tated as interesting. Thus the SEQ2SEQ relevance
and interestingness scores have a higher correla-
tion than for HUMAN or RETRIEVAL.

The lower rows show correlations for different
levels of overall quality. For stories whose over-
all quality is greater than 7.5, the correlations be-
tween the overall score and the other two criteria is
higher than when the overall quality is lower. The
correlation between relevance and interestingness
is not as high (0.34). The stories at this quality
level are already at least somewhat relevant and
understandable, hence like HUMAN outputs, the
interestingness score is not as dependent on the
relevance score. For stories with overall quality
below 2.5, the stories are often not understandable
so annotators assigned low scores to all three cri-
teria, leading to higher correlation among them.

4.2 Features
We also analyze our dataset by designing features
of the 〈context, continuation〉 pair and measuring
their correlation with each criterion.

4.2.1 Shallow Features
We consider simple features designed to capture
surface-level characteristics of the continuation:

• Length: number of tokens in the continuation.

• Relative length: the length of the continuation
divided by the length of the context.
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Context 1: Tripp wanted to learn how to put a topspin on his serve . He was a more advanced tennis player . He sought out
a tennis pro to help him . He finally perfected his topspin .
System Continuation O R I
S2S-GREEDY He won the game . 4.12 4.99 3.45
S2S-DIV Now he had the game. 4.25 5.04 3.60
S2S-SAMPLE Now , he is able to play his . 4.48 4.88 3.94
S2S-REVERSE He took a few minutes . 4.92 5.77 4.22
RETRIEVAL Lyn now has a great backhand . 6.05 7.14 5.34
HUMAN His game improved even more. 5.05 6.16 4.36
Context 2: Neil had just entered the country of Oman . He found the desert land to be enchanting . The women dressed
beautifully and the men were friendly . Neil felt very comfortable in Oman .
S2S-GREEDY Neil decided to try the best man. 5.47 6.13 4.74
S2S-DIV They were days and decided 4.66 5.65 3.96
S2S-SAMPLE Neil Neil the trip trip of the trip of the trip 4.95 5.66 4.72
S2S-REVERSE He took a tour of the city. 3.97 4.83 3.64
RETRIEVAL Neil saw that South Koreans were a very kind people ! 6.26 6.94 5.66
HUMAN He wished he could stay forever! 6.24 7.22 5.58
Context 3: Ed and Emma were twins and wanted to have matching Halloween costumes . But they couldn ’t agree on a
costume ! Ed wanted to be a superhero and Emma wanted to be a mermaid .
S2S-GREEDY He took out and could make to work . 4.60 5.11 4.11
S2S-DIV So , s ’ and they would learn . 4.71 5.41 4.18
S2S-SAMPLE They decided went their great time and they their family . s house . 4.86 5.50 4.58
S2S-REVERSE They decided to try to their local home . 4.74 5.21 4.22
RETRIEVAL Then their mom offered a solution to please them both . 5.59 6.11 5.05
HUMAN Then their mom said she could make costumes that ’d please them both . 6.17 6.71 5.69

Table 3: Sample system outputs for different contexts. Final three columns show predicted scores from our trained
scorer (see Section 6 for details).

Corr(O,R) Corr(O,I) Corr(R,I)
HUMAN 0.70 0.63 0.44
RETRIEVAL 0.68 0.52 0.47
HUMAN + RET. 0.76 0.61 0.53
SEQ2SEQ-ALL 0.72 0.70 0.59
Overall > 7.5 0.46 0.47 0.34
5 < Overall < 7.5 0.44 0.31 0.24
2.5 < Overall < 5 0.38 0.35 0.38
Overall < 2.5 0.41 0.41 0.38
Overall > 2.5 0.76 0.69 0.59

Table 4: Pearson correlations between criteria for dif-
ferent subsets of the annotated data.

• Language model: perplexity from a 4-gram
language model with modified Kneser-Ney
smoothing estimated using KenLM (Heafield,
2011) from the Personal Story corpus (Gordon
and Swanson, 2009), which includes about 1.6
million personal stories from weblogs.

• IDF: the average of the inverse document fre-
quencies (IDFs) across all tokens in the contin-
uation. The IDFs are computed using Wikipedia
sentences as “documents”.

4.2.2 PMI Features
We use features based on pointwise mutual infor-
mation (PMI) of word pairs in the context and con-
tinuation. We take inspiration from methods de-
veloped for the Choice of Plausible Alternatives
(COPA) task (Roemmele et al., 2011), in which
a premise is provided with two alternatives. Gor-

don et al. (2011) obtained strong results by using
PMIs to compute a score that measures the causal
relatedness between a premise and its potential al-
ternatives. For a 〈context, continuation〉 pair, we
compute the following score (Gordon et al., 2011):

spmi =

∑
u∈context

∑
v∈continuation PMI(u, v)

NcontextNcontination

where Ncontext and Ncontinuation are the numbers of
tokens in the context and continuation. We cre-
ate 6 versions of the above score, combining three
window sizes (10, 25, and 50) with both stan-
dard PMI and positive PMI (PPMI). To compute
PMI/PPMI, we use the Personal Story corpus.4

For efficiency and robustness, we only compute
PMI/PPMI of a word pair if the pair appears more
than 10 times in the corpus using the particular
window size.

4.2.3 Entity Mention Features
We compute several features to capture how
relevant the continuation is to the input. In

4We use Wikipedia for IDFs and the Personal Story cor-
pus for PMIs. IDF is a simpler statistic which is presumed to
be similar across a range of large corpora for most words; we
use Wikipedia because it has broad coverage in terms of vo-
cabulary. PMIs require computing word pair statistics and are
therefore expected to be more data-dependent, so we chose
the Personal Story corpus due to its effectiveness for related
tasks (Gordon et al., 2011).
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Feature O R I
Length 0.007 0.055 0.071
Relative length 0.018 0.020 0.060
Language model 0.025 0.034 0.058
IDF 0.418 0.316 0.408
PPMI (w = 10) 0.265 0.321 0.224
PPMI (w = 25) 0.289 0.341 0.249
PPMI (w = 50) 0.299 0.351 0.259
Has old mentions 0.050 0.151 0.023
Number of old mentions 0.057 0.146 0.049
Has new mentions -0.048 -0.115 -0.026
Number of new mentions -0.052 -0.119 -0.029
Has new names -0.005 -0.129 0.017
Number of new names -0.005 -0.130 0.017
Is HUMAN? 0.56 0.62 0.50
Is HUMAN ∪ RETRIEVAL? 0.60 0.49 0.56

Table 5: Spearman correlations between features and
annotations. The final two rows are “oracle” binary
features that return 1 for continuations from those sets.

order to compute these features we use the
part-of-speech tagging, named entity recognition
(NER), and coreference resolution tools in Stan-
ford CoreNLP (Manning et al., 2014):

• Has old mentions: a binary feature that returns
1 if the continuation has “old mentions,” i.e.,
mentions that are part of a coreference chain
that began in the context.

• Number of old mentions: the number of old
mentions in the continuation.

• Has new mentions: a binary feature that returns
1 if the continuation has “new mentions,” i.e.,
mentions that are not part of any coreference
chain that began in the context.

• Number of new mentions: the number of new
mentions in the continuation.

• Has new names: if the continuation has new
mentions, this binary feature returns 1 if any of
the new mentions is a name, i.e., if the mention
is a person named entity from the NER system.

• Number of new names: the number of new
names in the continuation.

4.3 Comparing Features
Table 5 shows Spearman correlations between our
features and the criteria.5 The length features have
small positive correlations with all three criteria,
showing highest correlation with interestingness.
Language model perplexity shows weak correla-
tion for all three measures, with its highest cor-

5These use the combined training and validation sets; we
describe splitting the data below in Section 6.

relation for interestingness. The SEQ2SEQ mod-
els output very common words which lets them
have relatively low perplexities even with occa-
sional disfluencies, while the human-written out-
puts contain more rare words.

The IDF feature shows highest correlation with
overall and interestingness, and lower correlation
with relevance. This is intuitive since the IDF
feature will be largest when many rare words are
used, which is expected to correlate with inter-
estingness more than relevance. We suspect IDF
correlates so well with overall because SEQ2SEQ

models typically generate common words, so this
feature may partially separate the SEQ2SEQ from
HUMAN/RETRIEVAL.

Unlike IDF, the PPMI scores (with window
sizes w shown in parentheses) show highest cor-
relations with relevance. This is intuitive, since
PPMI will be highest when topical coherence is
present in the discourse. Higher correlations are
found when using larger window sizes.6

The old mentions features have the highest cor-
relation with relevance, as expected. A contin-
uation that continues coreference chains is more
likely to be relevant. The new mention/name fea-
tures have negative correlations with relevance,
which is also intuitive: introducing new characters
makes the continuation less relevant.

To explore the question of separability be-
tween machine and human-written continuations,
we measured correlations of “oracle” features that
simply return 1 if the output was generated by hu-
mans and 0 if it was generated by a system. Such
features are highly correlated with all three crite-
ria as seen in the final two rows of Table 5. This
suggests that human annotators strongly preferred
human generated stories over our models’ out-
puts. Some features may correlate with the anno-
tated criteria if they separate human- and machine-
generated continuations (e.g., IDF).

5 Methods for Score Prediction

We now consider ways to build models to predict
our criteria. We define neural networks that take as
input representations of the context/continuation
pair 〈b, c〉 and our features and output a continu-
ous value for each predicted criterion.

We experiment with two ways of representing
the input based on the embeddings of b and c,

6We omit full results for brevity, but the PPMI features
showed slightly higher correlations than PMI features.
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which we denote vb and vc respectively. The
first (“cont”) uses only the continuation embed-
ding without any representation of the context or
the similarity between the context and continua-
tion: xcont = 〈vc〉. The second (“sim+cont”)
also contains the elementwise multiplication of
the context and continuation embeddings concate-
nated with the absolute difference: xsim+cont =
〈vb � vc, |vb − vc|,vc〉.

To compute representations v, we use the av-
erage of character n-gram embeddings (Huang
et al., 2013; Wieting et al., 2016), fixing the out-
put dimensionality to 300. We found this to out-
perform other methods. In particular, the next
best method used gated recurrent averaging net-
works (GRANs; Wieting and Gimpel, 2017), fol-
lowed by long short-term memory (LSTM) net-
works (Hochreiter and Schmidhuber, 1997), and
followed finally by word averaging.

The input, whether xcont or xsim+cont, is fed to
one fully-connected hidden layer with 300 units,
followed by a rectified linear unit (ReLU) activa-
tion. Our manually computed features (Length,
IDF, PMI, and Mention) are concatenated prior to
this layer. The output layer follows and uses a lin-
ear activation.

We use mean absolute error as our loss function
during training. We train to predict the three crite-
ria jointly, so the loss is actually the sum of mean
absolute errors over the three criteria. We found
this form of multi-task learning to significantly
outperform training separate models for each cri-
terion. When tuning, we tune based on the aver-
age Spearman correlation across the three criteria
on our validation set. We train all models for 25
epochs using Adam (Kingma and Ba, 2014) with
a learning rate of 0.001.

6 Experiments

After averaging the two annotator scores to get
our dataset of 4586 context/continuation pairs, we
split the data randomly into 600 pairs for valida-
tion, 600 for testing, and used the rest (3386) for
training. For our evaluation metric, we use Spear-
man correlation between the scorer’s predictions
and the annotated scores.

6.1 Feature Ablation

Table 6 shows results as features are either re-
moved from the full set or added to the featureless
model, all when using the “cont” input schema.

O R I
All features 57.3 53.4 49.6
- PMI 56.3 50.4 48.6
- IDF 56.6 53.6 46.0
- Mention 54.8 50.3 48.6
- Length 56.1 55.9 45.3
No features 51.9 44.9 43.8
+ PMI 54.5 50.9 44.9
+ IDF 54.3 46.7 46.3
+ Mention 53.8 48.8 46.0
+ Length 51.9 43.1 44.9
+ IDF, Length 54.6 46.5 47.3

Table 6: Ablation experiments with several feature sets
(Spearman correlations on the validation set).

validation test
model features O R I O R I

none 51.9 44.9 43.8 53.3 46.0 50.5
cont IDF, Len. 54.6 46.5 47.3 51.6 40.6 50.2

all 57.3 53.4 49.6 57.1 54.3 52.8

sim+ none 51.6 43.7 44.3 52.2 45.0 48.4

cont IDF, Len. 54.2 45.6 47.7 56.0 46.8 53.0
all 55.1 54.8 47.4 58.7 55.8 52.9

Table 7: Correlations (Spearman’s ρ× 100) on valida-
tion and test sets for best models with three feature sets.

Each row corresponds to one feature ablation or
addition, except for the final row which corre-
sponds to adding two feature sets that are efficient
to compute: IDF and Length. The Mention and
PMI features are the most useful for relevance,
which matches the pattern of correlations in Ta-
ble 5, while IDF and Length features are most
helpful for interestingness. All feature sets con-
tribute in predicting overall quality, with the Men-
tion features showing the largest drop in correla-
tion when they are ablated.

6.2 Final Results

Table 7 shows our final results on the validation
and test sets. The highest correlations on the
test set are achieved by using the sim+cont model
with all features. While interestingness can be
predicted reasonably well with just IDF and the
Length features, the prediction of relevance is im-
proved greatly with the full feature set.

Using our strongest models, we computed the
average predicted criterion scores for each story
generation system on the test set. Overall, the pre-
dicted rankings are strongly correlated with the
rankings yielded by the aggregated annotations
shown in Table 2, especially in terms of distin-
guishing human-written and machine-generated
continuations.

While the PMI features are very helpful for pre-

199



dicting relevance, they do have demanding space
requirements due to the sheer number of word
pairs with nonzero counts in large corpora. We at-
tempted to replace the PMI features by similar fea-
tures based on word embedding similarity, follow-
ing the argument that skip-gram embeddings with
negative sampling form an approximate factoriza-
tion of a PMI score matrix (Levy and Goldberg,
2014). However, we were unable to find the same
performance by doing so; the PMI scores were still
superior.

For the automatic scores shown in Table 3, we
used the sim+cont model with IDF and Length
features. Since this model does not require PMIs
or NLP analyzers, it is likely to be the one used
most in practice by other researchers within train-
ing/tuning settings. We release this trained scorer
as well as our annotated data to the research com-
munity.

7 Conclusion

We conducted a manual evaluation of neural
sequence-to-sequence and retrieval-based story
continuation systems along three criteria: overall
quality, relevance, and interestingness. We ana-
lyzed the annotations and identified features that
correlate with each criterion. These annotations
also provide a new story understanding task: pre-
dicting the quality scores of generated continua-
tions. We took initial steps toward solving this
task by developing an automatic scorer that uses
features, compositional architectures, and multi-
task training. Our trained continuation scorer can
be used as a rich feature function for story gen-
eration or a reward function for systems that use
reinforcement learning to learn to generate stories.
The annotated data and trained scorer are available
at the authors’ websites.
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