
Proceedings of the 7th Joint Conference on Lexical and Computational Semantics (*SEM), pages 160–166
New Orleans, June 5-6, 2018. c©2018 Association for Computational Linguistics

Integrating Multiplicative Features
into Supervised Distributional Methods for Lexical Entailment

Tu Vu
College of Information and Computer Sciences

University of Massachusetts Amherst
Amherst, MA, USA

tuvu@cs.umass.edu

Vered Shwartz
Computer Science Department

Bar-Ilan University
Ramat-Gan, Israel

vered1986@gmail.com

Abstract

Supervised distributional methods are applied
successfully in lexical entailment, but recent
work questioned whether these methods ac-
tually learn a relation between two words.
Specifically, Levy et al. (2015) claimed that
linear classifiers learn only separate properties
of each word. We suggest a cheap and easy
way to boost the performance of these meth-
ods by integrating multiplicative features into
commonly used representations. We provide
an extensive evaluation with different classi-
fiers and evaluation setups, and suggest a suit-
able evaluation setup for the task, eliminating
biases existing in previous ones.

1 Introduction

Lexical entailment is concerned with identifying
the semantic relation, if any, holding between two
words, as in (pigeon, hyponym, animal). The pop-
ularity of the task stems from its potential rele-
vance to various NLP applications, such as ques-
tion answering and recognizing textual entailment
(Dagan et al., 2013) that often rely on lexical se-
mantic resources with limited coverage like Word-
net (Miller, 1995). Relation classifiers can be used
either within applications or as an intermediate
step in the construction of lexical resources which
is often expensive and time-consuming.

Most methods for lexical entailment are distri-
butional, i.e., the semantic relation holding be-
tween x and y is recognized based on their
distributional vector representations. While the
first methods were unsupervised and used high-
dimensional sparse vectors (Weeds and Weir,
2003; Kotlerman et al., 2010; Santus et al., 2014),
in recent years, supervised methods became popu-
lar (Baroni et al., 2012; Roller et al., 2014; Weeds
et al., 2014). These methods are mostly based
on word embeddings (Mikolov et al., 2013b; Pen-
nington et al., 2014a) utilizing various vector com-

binations that are designed to capture relational in-
formation between two words.

While most previous work reported success us-
ing supervised methods, some questions remain
unanswered: First, several works suggested that
supervised distributional methods are incapable of
inferring the relationship between two words, but
rather rely on independent properties of each word
(Levy et al., 2015; Roller and Erk, 2016; Shwartz
et al., 2016), making them sensitive to training
data; Second, it remains unclear what is the most
appropriate representation and classifier; previ-
ous studies reported inconsistent results with Con-
cat〈 ~vx⊕ ~vy〉 (Baroni et al., 2012) and Diff〈~vy− ~vx〉
(Roller et al., 2014; Weeds et al., 2014; Fu et al.,
2014), using various classifiers.

In this paper, we investigate the effectiveness of
multiplicative features, namely, the element-wise
multiplication Mult〈 ~vx� ~vy〉, and the squared dif-
ference Sqdiff〈(~vy − ~vx) � (~vy − ~vx)〉. These
features, similar to the cosine similarity and the
Euclidean distance, might capture a different no-
tion of interaction information about the relation-
ship holding between two words. We directly inte-
grate them into some commonly used representa-
tions. For instance, we consider the concatenation
Diff⊕Mult 〈(~vy− ~vx)⊕(~vx� ~vy)〉 that might cap-
ture both the typicality of each word in the relation
(e.g., if y is a typical hypernym) and the similarity
between the words.

We experiment with multiple supervised distri-
butional methods and analyze which representa-
tions perform well in various evaluation setups.
Our analysis confirms that integrating multiplica-
tive features into standard representations can sub-
stantially boost the performance of linear classi-
fiers. While the contribution over non-linear clas-
sifiers is sometimes marginal, they are expensive
to train, and linear classifiers can achieve the same
effect “cheaply” by integrating multiplicative fea-

160

tures. The contribution of multiplicative features
is mostly prominent in strict evaluation settings,
i.e., lexical split (Levy et al., 2015) and out-of-
domain evaluation that disable the models’ abil-
ity to achieve good performance by memorizing
words seen during training. We find that Concat
⊕Mult performs consistently well, and suggest it
as a strong baseline for future research.

2 Related Work

Available Representations In supervised distri-
butional methods, a pair of words (x, y) is rep-
resented as some combination of the word em-
beddings of x and y, most commonly Concat
〈~vx ⊕ ~vy〉 (Baroni et al., 2012) or Diff 〈~vy − ~vx〉
(Weeds et al., 2014; Fu et al., 2014).

Limitations Recent work questioned whether
supervised distributional methods actually learn
the relation between x and y or only separate prop-
erties of each word. Levy et al. (2015) claimed
that they tend to perform “lexical memorization”,
i.e., memorizing that some words are prototypical
to certain relations (e.g., that y = animal is a hy-
pernym, regardless of x). Roller and Erk (2016)
found that under certain conditions, these methods
actively learn to infer hypernyms based on sep-
arate occurrences of x and y in Hearst patterns
(Hearst, 1992). In either case, they only learn
whether x and y independently match their cor-
responding slots in the relation, a limitation which
makes them sensitive to the training data (Shwartz
et al., 2017; Sanchez and Riedel, 2017).

Non-linearity Levy et al. (2015) claimed that
the linear nature of most supervised methods lim-
its their ability to capture the relation between
words. They suggested that using support vector
machine (SVM) with non-linear kernels slightly
mitigates this issue, and proposed KSIM, a custom
kernel with multiplicative integration.

Multiplicative Features The element-wise mul-
tiplication has been studied by Weeds et al. (2014),
but models that operate exclusively on it were not
competitive to Concat and Diff on most tasks.
Roller et al. (2014) found that the squared differ-
ence, in combination with Diff, is useful for hyper-
nymy detection. Nevertheless, little to no work has
focused on investigating combinations of repre-
sentations obtained by concatenating various base
representations for the more general task of lexical
entailment.

Base representations Combinations
Only-x〈 ~vx〉 Diff⊕Mult
Only-y〈~vy〉 Diff⊕ Sqdiff

Diff〈~vy − ~vx〉 Sum⊕Mult
Sum〈 ~vx + ~vy〉 Sum⊕ Sqdiff

Concat〈 ~vx ⊕ ~vy〉 Concat⊕Mult
Mult〈 ~vx � ~vy〉 Concat⊕ Sqdiff

Sqdiff〈(~vy − ~vx)� (~vy − ~vx)〉

Table 1: Word pair representations.

3 Methodology

We classify each word pair (x, y) to a specific
semantic relation that holds for them, from a set
of pre-defined relations (i.e., multiclass classifica-
tion), based on their distributional representations.

3.1 Word Pair Representations

Given a word pair (x, y) and their embeddings
~vx, ~vy, we consider various compositions as fea-
ture vectors for classifiers. Table 1 displays base
representations and combination representations,
achieved by concatenating two base representa-
tions.

3.2 Word Vectors

We used 300-dimensional pre-trained word em-
beddings, namely, GloVe (Pennington et al.,
2014b) containing 1.9M word vectors trained on a
corpus of web data from Common Crawl (42B to-
kens),1 and Word2vec (Mikolov et al., 2013a,c)
containing 3M word vectors trained on a part of
Google News dataset (100B tokens).2 Out-of-
vocabulary words were initialized randomly.

3.3 Classifiers

Following previous work (Levy et al., 2015; Roller
and Erk, 2016), we trained different types of clas-
sifiers for each word-pair representation outlined
in Section 3.1, namely, logistic regression with
L2 regularization (LR), SVM with a linear kernel
(LIN), and SVM with a Gaussian kernel (RBF). In
addition, we trained multi-layer perceptrons with
a single hidden layer (MLP). We compare our mod-
els against the KSIM model found to be successful
in previous work (Levy et al., 2015; Kruszewski
et al., 2015). We do not include Roller and Erk
(2016)’s model since it focuses only on hyper-
nymy. Hyper-parameters are tuned using grid
search, and we report the test performance of the

1
http://nlp.stanford.edu/projects/glove/

2
http://code.google.com/p/word2vec/

161

Dataset Relations #Instances #Domains
BLESS attri (attribute), coord (co-hyponym), event, hyper (hypernymy), mero (meronymy), random 26,554 17
K&H+N hypo (hypernymy), mero (meronymy), sibl (co-hyponym), false (random) 63,718 3
ROOT09 hyper (hypernymy), coord (co-hyponym), random 12,762 –

EVALution
HasProperty (attribute), synonym, HasA (possession),

7,378 –
MadeOf (meronymy), IsA (hypernymy), antonym, PartOf (meronymy)

Table 2: Metadata on the datasets. Relations are mapped to corresponding WordNet relations, if available.

hyper-parameters that performed best on the vali-
dation set. Below are more details about the train-
ing procedure:

• For LR, the inverse of regularization strength
is selected from {2−1, 21, 23, 25}.
• For LIN, the penalty parameter C of the error

term is selected from {2−5, 2−3, 2−1, 21}.
• For RBF, C and γ values are selected from
{21, 23, 25, 27} and {2−7, 2−5, 2−3, 2−1}, re-
spectively.
• For MLP, the hidden layer size is either 50 or

100, and the learning rate is fixed at 10−3. We
use early stopping based on the performance
on the validation set. The maximum number
of training epochs is 100.
• For KSIM, C and α values are selected from
{2−7, 2−5, . . . , 27} and {0.0, 0.1, . . . , 1.0},
respectively.

3.4 Datasets
We evaluated the methods on four common se-
mantic relation datasets: BLESS (Baroni and Lenci,
2011), K&H+N (Necsulescu et al., 2015), ROOT09

(Santus et al., 2016), and EVALution (Santus et al.,
2015). Table 2 provides metadata on the datasets.
Most datasets contain word pairs instantiating dif-
ferent, explicitly typed semantic relations, plus a
number of unrelated word pairs (random). In-
stances in BLESS and K&H+N are divided into a
number of topical domains.3

3.5 Evaluation Setup
We consider the following evaluation setups:

Random (RAND) We randomly split each
dataset into 70% train, 5% validation and 25% test.

Lexical Split (LEX) In line with recent work
(Shwartz et al., 2016), we split each dataset into
train, validation and test sets so that each con-
tains a distinct vocabulary. This differs from Levy
et al. (2015) who dedicated a subset of the train

3We discarded two relations in EVALution with too few
instances and did not include its domain information since
each word pair can belong to multiple domains at once.

set for evaluation, allowing the model to memo-
rize when tuning hyper-parameters. We tried to
keep the same ratio 70 : 5 : 25 as in the random
setup.

Out-of-domain (OOD) To test whether the
methods capture a generic notion of each semantic
relation, we test them on a domain that the clas-
sifiers have not seen during training. This setup
is more realistic than the random and lexical split
setups, in which the classifiers can benefit from
memorizing verbatim words (random) or regions
in the vector space (lexical split) that fit a specific
slot of each relation.

Specifically, on BLESS and K&H+N, one domain is
held out for testing whilst the classifiers are trained
and validated on the remaining domains. This pro-
cess is repeated using each domain as the test set,
and each time, a randomly selected domain among
the remaining domains is left out for validation.
The average results are reported.

4 Experiments

Table 3 summarizes the best performing base rep-
resentations and combinations on the test sets
across the various datasets and evaluation setups.4

The results across the datasets vary substantially
in some cases due to the differences between the
datasets’ relations, class balance, and the source
from which they were created. For instance, K&H+N
is imbalanced between the number of instances
across relations and domains. ROOT09 was de-
signed to mitigate the lexical memorization issue
by adding negative switched hyponym-hypernym
pairs to the dataset, making it an inherently more
difficult dataset. EVALution contains a richer set
of semantic relations. Overall, the addition of
multiplicative features improves upon the perfor-
mance of the base representations.

Classifiers Multiplicative features substantially
boost the performance of linear classifiers. How-
ever, the gain from adding multiplicative features

4Due to the space limitation, we only show the results ob-
tained with Glove. The trend is similar across the word em-
beddings.

162

Setup Dataset Linear classifiers (LR, LIN) Non-linear classifiers (RBF, MLP)
KSIM

~vy Base Combination ~vy Base Combination

RAND

BLESS 84.4
LR
Concat

83.8
LR
Concat ⊕ Mult

89.5 (+5.7) 89.3
RBF
Concat

94.0
RBF
Concat ⊕ Mult

94.3 (+0.3) 70.2

K&H-N 89.1
LR
Concat

95.4
LR
Concat ⊕ SqDiff

96.1 (+0.7) 96.4
RBF
Concat

98.6
RBF
Concat ⊕ Mult

98.6 (0.0) 82.4

ROOT09 68.5
LIN
Sum

65.9
LIN
Sum ⊕ Mult

84.6 (+18.7) 66.1
RBF
Sum

87.3
RBF
Sum ⊕ SqDiff

88.8 (+1.5) 72.3

EVALution 49.7
LIN
Concat

56.7
LIN
Concat ⊕ Mult

56.8 (+0.1) 52.1
RBF
Concat

61.1
RBF
Concat ⊕ Mult

60.6 (-0.5) 50.5

LEX

BLESS 69.9
LIN
Concat

70.6
LIN
Concat ⊕ Mult

74.5 (+3.9) 69.8
MLP
Concat

63.0
MLP
Concat ⊕ Mult

73.8 (+10.8) 65.8

K&H-N 78.3
LIN
Sum

74.0
LIN
Sum ⊕ SqDiff

76.1 (+2.1) 83.2
RBF
Sum

82.0
RBF
Sum ⊕ Mult

81.7 (-0.3) 77.5

ROOT09 66.7
LR
Concat

66.0
LR
Concat ⊕ Mult

77.9 (+11.9) 64.5
RBF
Concat

76.8
RBF
Concat ⊕ Mult

81.6 (+4.8) 66.7

EVALution 35.0
LR
Concat

37.9
LR
Concat ⊕ Mult

40.2 (+2.3) 35.5
RBF
Concat

43.1
RBF
Concat ⊕ Mult

44.9 (+1.8) 35.9

OOD

BLESS 70.9
LIN
Concat

69.9
LIN
Concat ⊕ Mult

77.0 (+7.1) 69.9
RBF
Diff

78.7
RBF
Diff ⊕ Mult

81.5 (+2.8) 57.8

K&H-N 38.5
LIN
Concat

38.6
LIN
Concat ⊕ Mult

39.7 (+1.1) 48.6
MLP
Sum

44.7
MLP
Sum ⊕ Mult

47.9 (+3.2) 48.9

Table 3: Best test performance (F1) across different datasets and evaluation setups, using Glove. The number in
brackets indicates the performance gap between the best performing combination and base representation setups.

Vector/ RAND OOD

Classifier ~vy Diff Diff ⊕ Mult Sum Sum ⊕ Mult Concat Concat ⊕ Mult ~vy Diff Diff ⊕ Mult Sum Sum ⊕ Mult Concat Concat ⊕ Mult

G
lo

V
e

LR 84.4 81.5 87.6 (+6.1) 81.5 87.0 (+5.5) 83.8 89.5 (+5.7) 70.9 64.5 74.7 (+10.2) 59.2 68.9 (+9.7) 69.5 76.5 (+7.0)

LIN 84.1 81.5 87.7 (+6.2) 81.3 87.2 (+5.9) 83.8 89.2 (+5.4) 70.7 64.6 74.8 (+10.2) 59.3 69.4 (+10.1) 69.9 77.0 (+7.1)

RBF 89.3 93.8 94.1 (+0.3) 94.4 94.2 (-0.2) 94.0 94.3 (+0.3) 67.8 78.7 81.5 (+2.8) 65.3 66.4 (+1.1) 69.5 75.7 (+6.2)

MLP 84.4 87.4 89.2 (+1.8) 87.2 89.9 (+2.7) 90.5 90.5 (0.0) 69.9 67.4 77.7 (+10.3) 57.3 66.1 (+8.8) 71.5 77.3 (+5.8)

W
or

d2
ve

c

LR 83.5 81.0 85.4 (+4.4) 80.0 84.6 (+4.6) 83.6 87.1 (+3.5) 71.2 62.4 69.0 (+6.6) 59.0 65.3 (+6.3) 71.8 76.1 (+4.3)

LIN 83.3 80.8 84.6 (+3.8) 80.4 84.5 (+4.1) 83.3 86.5 (+3.2) 71.5 62.8 69.1 (+6.3) 59.8 65.2 (+5.4) 72.1 76.0 (+3.9)

RBF 89.1 93.7 93.7 (0.0) 93.7 93.8 (+0.1) 93.6 93.8 (+0.2) 69.2 75.6 76.0 (+0.4) 64.7 66.3 (+1.6) 71.4 75.3 (+3.9)

MLP 81.6 81.0 84.6 (+3.6) 79.6 85.2 (+5.6) 81.3 84.7 (+3.4) 70.2 63.4 69.3 (+5.9) 56.2 60.0 (+3.8) 70.5 74.6 (+4.1)

Table 4: Test performance (F1) on BLESS in the RAND and OOD setups, using Glove and Word2vec.

is smaller when non-linear classifiers are used,
since they partially capture such notion of inter-
action (Levy et al., 2015). Within the same repre-
sentation, there is a clear preference to non-linear
classifiers over linear classifiers.

Evaluation Setup The Only-y representation
indicates how well a model can perform without
considering the relation between x and y (Levy
et al., 2015). Indeed, in RAND, this method per-
forms similarly to the others, except on ROOT09,
which by design disables lexical memorization.
As expected, a general decrease in performance is
observed in LEX and OOD, stemming from the
methods’ inability to benefit from lexical memo-
rization. In these setups, there is a more signifi-
cant gain from using multiplicative features when
non-linear classifiers are used.

Word Pair Representations Among the base
representations Concat often performed best,
while Mult seemed to be the preferred multiplica-
tive addition. Concat ⊕ Mult performed consis-

tently well, intuitively because Concat captures
the typicality of each word in the relation (e.g.,
if y is a typical hypernym) and Mult captures the
similarity between the words (where Concat alone
may suggest that animal is a hypernym of apple).
To take a closer look at the gain from adding Mult,
Table 4 shows the performance of the various base
representations and combinations with Mult using
different classifiers on BLESS.5

5 Analysis of Multiplicative Features

We focus the rest of the discussion on the OOD
setup, as we believe it is the most challenging
setup, forcing methods to consider the relation be-
tween x and y. We found that in this setup, all
methods performed poorly on K&H+N, likely due
to its imbalanced domain and relation distribution.
Examining the per-relation F1 scores, we see that
many methods classify all pairs to one relation.
Even KSIM, the best performing method in this

5We also tried ~vx with multiplicative features but they per-
formed worse.

163

x relation y similarity Concat Concat ⊕ Mult
cloak-n random good-j 0.195 attribute random
cloak-n random hurl-v 0.161 event random
cloak-n random stop-v 0.186 event random
coat-n event wear-v 0.544 random event
cloak-n mero silk-n 0.381 random mero
dress-n attri feminine-j 0.479 random attri

Table 5: Example pairs which were incorrectly classified by Concat while being correctly classified by Concat ⊕
Mult in BLESS, along with their cosine similarity scores.

setup, classifies pairs as either hyper or random,
effectively only determining if they are related or
not. We therefore focus our analysis on BLESS.

To get a better intuition of the contribution of
multiplicative features, Table 5 exemplifies pairs
that were incorrectly classified by Concat (RBF)
while correctly classified by Concat ⊕ Mult
(RBF), along with their cosine similarity scores. It
seems that Mult indeed captures the similarity be-
tween x and y. While Concat sometimes relies
on properties of a single word, e.g. classifying an
adjective y to the attribute relation and a verb y to
the event relation, adding Mult changes the clas-
sification of such pairs with low similarity scores
to random. Conversely, pairs with high similarity
scores which were falsely classified as random by
Concat are assigned specific relations by
Concat ⊕Mult.

Interestingly, we found that across domains,
there is an almost consistent order of relations with
respect to mean intra-pair cosine similarity:

coord meronym attribute event hypernym random
0.426 0.323 0.304 0.296 0.279 0.141

Table 6: Mean pairwise cosine similarity in BLESS.

Since the difference between random (0.141)
and other relations (0.279-0.426) was the most
significant, it seems that multiplicative features
help distinguishing between related and unrelated
pairs. This similarity is possibly also used to dis-
tinguish between other relations.

6 Conclusion

We have suggested a cheap way to boost the
performance of supervised distributional methods
for lexical entailment by integrating multiplica-
tive features into standard word-pair representa-
tions. Our results confirm that the multiplicative
features boost the performance of linear classi-
fiers, and in strict evaluation setups, also of non-
linear classifiers. We performed an extensive eval-
uation with different classifiers and evaluation se-

tups, and suggest the out-of-domain evaluation
as the most suitable for the task. Directions for
future work include investigating other composi-
tions, and designing a neural model that can auto-
matically learn such features.

7 Acknowledgements

We would like to thank Wei Lu for his involve-
ment and advice in the early stage of this project,
Stephen Roller and Omer Levy for valuable dis-
cussions, and the anonymous reviewers for their
insightful comments and suggestions.

Vered is supported in part by an Intel
ICRI-CI grant, the Israel Science Foundation
grant 1951/17, the German Research Foundation
through the German-Israeli Project Cooperation
(DIP, grant DA 1600/1-1), the Clore Scholars Pro-
gramme (2017), and the AI2 Key Scientific Chal-
lenges Program (2017).

References
Marco Baroni, Raffaella Bernardi, Ngoc-Quynh Do,

and Chung-chieh Shan. 2012. Entailment above the
word level in distributional semantics. In Proceed-
ings of the 13th Conference of the European Chap-
ter of the Association for Computational Linguis-
tics, pages 23–32, Avignon, France. Association for
Computational Linguistics.

Marco Baroni and Alessandro Lenci. 2011. How we
blessed distributional semantic evaluation. In Pro-
ceedings of the GEMS 2011 Workshop on GEomet-
rical Models of Natural Language Semantics, pages
1–10. Association for Computational Linguistics.

Ido Dagan, Dan Roth, Mark Sammons, and Fabio Mas-
simo Zanzotto. 2013. Recognizing textual entail-
ment: Models and applications. Synthesis Lectures
on Human Language Technologies, 6(4):1–220.

Ruiji Fu, Jiang Guo, Bing Qin, Wanxiang Che, Haifeng
Wang, and Ting Liu. 2014. Learning semantic hier-
archies via word embeddings. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1199–1209, Baltimore, Maryland. Association for
Computational Linguistics.

164

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings of
the 14th Conference on Computational Linguistics -
Volume 2, COLING ’92, pages 539–545.

Lili Kotlerman, Ido Dagan, Idan Szpektor, and Maayan
Zhitomirsky-geffet. 2010. Directional distributional
similarity for lexical inference. Natural Language
Engineering, 16(4):359–389.

Germn Kruszewski, Denis Paperno, and Marco Baroni.
2015. Deriving boolean structures from distribu-
tional vectors. Transactions of the Association for
Computational Linguistics, 3:375–388.

Omer Levy, Steffen Remus, Chris Biemann, and Ido
Dagan. 2015. Do supervised distributional meth-
ods really learn lexical inference relations? In Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
970–976, Denver, Colorado. Association for Com-
putational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. Proceedings of Workshop at
ICLR, 2013.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013c. Distributed represen-
tations of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

George A. Miller. 1995. Wordnet: A lexical
database for english. Communications of the ACM,
38(11):39–41.

Silvia Necsulescu, Sara Mendes, David Jurgens, Núria
Bel, and Roberto Navigli. 2015. Reading between
the lines: Overcoming data sparsity for accurate
classification of lexical relationships. In Proceed-
ings of the Fourth Joint Conference on Lexical and
Computational Semantics, pages 182–192, Denver,
Colorado. Association for Computational Linguis-
tics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014a. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543. Associa-
tion for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014b. Glove: Global vectors for word

representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Stephen Roller and Katrin Erk. 2016. Relations such
as hypernymy: Identifying and exploiting hearst pat-
terns in distributional vectors for lexical entailment.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2163–2172, Austin, Texas. Association for Compu-
tational Linguistics.

Stephen Roller, Katrin Erk, and Gemma Boleda. 2014.
Inclusive yet selective: Supervised distributional hy-
pernymy detection. In Proceedings of COLING
2014, the 25th International Conference on Compu-
tational Linguistics: Technical Papers, pages 1025–
1036, Dublin, Ireland. Dublin City University and
Association for Computational Linguistics.

Ivan Sanchez and Sebastian Riedel. 2017. How well
can we predict hypernyms from word embeddings?
a dataset-centric analysis. In Proceedings of the
15th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Volume 2,
Short Papers, pages 401–407, Valencia, Spain. As-
sociation for Computational Linguistics.

Enrico Santus, Alessandro Lenci, Tin-Shing Chiu, Qin
Lu, and Chu-Ren Huang. 2016. Nine features in
a random forest to learn taxonomical semantic re-
lations. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC 2016), Paris, France.

Enrico Santus, Alessandro Lenci, Qin Lu, and Sabine
Schulte im Walde. 2014. Chasing hypernyms in vec-
tor spaces with entropy. In Proceedings of the 14th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, volume 2: Short
Papers, pages 38–42, Gothenburg, Sweden. Associ-
ation for Computational Linguistics.

Enrico Santus, Frances Yung, Alessandro Lenci, and
Chu-Ren Huang. 2015. Evalution 1.0: an evolving
semantic dataset for training and evaluation of dis-
tributional semantic models. In Proceedings of the
4th Workshop on Linked Data in Linguistics (LDL-
2015), pages 64–69.

Vered Shwartz, Yoav Goldberg, and Ido Dagan. 2016.
Improving hypernymy detection with an integrated
path-based and distributional method. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 2389–2398, Berlin, Germany. Associa-
tion for Computational Linguistics.

Vered Shwartz, Enrico Santus, and Dominik
Schlechtweg. 2017. Hypernyms under siege:
Linguistically-motivated artillery for hypernymy
detection. In Proceedings of the 15th Conference
of the European Chapter of the Association for
Computational Linguistics: Volume 1, Long Papers,

165

pages 65–75, Valencia, Spain. Association for
Computational Linguistics.

Julie Weeds, Daoud Clarke, Jeremy Reffin, David Weir,
and Bill Keller. 2014. Learning to distinguish hyper-
nyms and co-hyponyms. In Proceedings of COL-
ING 2014, the 25th International Conference on
Computational Linguistics: Technical Papers, pages
2249–2259, Dublin, Ireland. Dublin City University
and Association for Computational Linguistics.

Julie Weeds and David Weir. 2003. Proceedings of
the 2003 Conference on Empirical Methods in Natu-
ral Language Processing, chapter A General Frame-
work for Distributional Similarity.

166

