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Abstract

The first stage of every knowledge base
question answering approach is to link en-
tities in the input question. We investigate
entity linking in the context of a question
answering task and present a jointly opti-
mized neural architecture for entity men-
tion detection and entity disambiguation
that models the surrounding context on dif-
ferent levels of granularity.

We use the Wikidata knowledge base and
available question answering datasets to
create benchmarks for entity linking on
question answering data. Our approach
outperforms the previous state-of-the-art
system on this data, resulting in an average
8% improvement of the final score. We fur-
ther demonstrate that our model delivers a
strong performance across different entity
categories.

1 Introduction

Knowledge base question answering (QA) requires
a precise modeling of the question semantics
through the entities and relations available in the
knowledge base (KB) in order to retrieve the cor-
rect answer. The first stage for every QA approach
is entity linking (EL), that is the identification of
entity mentions in the question and linking them
to entities in KB. In Figure 1, two entity mentions
are detected and linked to the knowledge base ref-
erents. This step is crucial for QA since the correct
answer must be connected via some path over KB
to the entities mentioned in the question.

The state-of-the-art QA systems usually rely on
off-the-shelf EL systems to extract entities from
the question (Yih et al., 2015). Multiple EL sys-
tems are freely available and can be readily applied

what are taylor swift’s albums ?

Taylor Swift Q462 album Q24951125

Red, 1989, etc.

PERFORMER
INSTANCE OF

Figure 1: An example question from a QA dataset
that shows the correct entity mentions and their
relationship with the correct answer to the question,
Qxxx stands for a knowledge base identifier

for question answering (e.g. DBPedia Spotlight1,
AIDA2). However, these systems have certain draw-
backs in the QA setting: they are targeted at long
well-formed documents, such as news texts, and
are less suited for typically short and noisy ques-
tion data. Other EL systems focus on noisy data
(e.g. S-MART, Yang and Chang, 2015), but are
not openly available and hence limited in their us-
age and application. Multiple error analyses of QA
systems point to entity linking as a major external
source of error (Berant and Liang, 2014; Reddy
et al., 2014; Yih et al., 2015).

The QA datasets are normally collected from the
web and contain very noisy and diverse data (Be-
rant et al., 2013), which poses a number of chal-
lenges for EL. First, many common features used
in EL systems, such as capitalization, are not mean-
ingful on noisy data. Moreover, a question is a
short text snippet that does not contain broader con-
text that is helpful for entity disambiguation. The
QA data also features many entities of various cat-
egories and differs in this respect from the Twitter
datasets that are often used to evaluate EL systems.

1http://www.dbpedia-spotlight.org
2https://www.mpi-inf.mpg.de/yago-naga/aida/
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In this paper, we present an approach that tackles
the challenges listed above: we perform entity men-
tion detection and entity disambiguation jointly in
a single neural model that makes the whole pro-
cess end-to-end differentiable. This ensures that
any token n-gram can be considered as a potential
entity mention, which is important to be able to
link entities of different categories, such as movie
titles and organization names.

To overcome the noise in the data, we automat-
ically learn features over a set of contexts of dif-
ferent granularity levels. Each level of granularity
is handled by a separate component of the model.
A token-level component extracts higher-level fea-
tures from the whole question context, whereas a
character-level component builds lower-level fea-
tures for the candidate n-gram. Simultaneously, we
extract features from the knowledge base context of
the candidate entity: character-level features are ex-
tracted for the entity label and higher-level features
are produced based on the entities surrounding the
candidate entity in the knowledge graph. This infor-
mation is aggregated and used to predict whether
the n-gram is an entity mention and to what entity
it should be linked.

Contributions The two main contributions of
our work are:

(i) We construct two datasets to evaluate EL for
QA and present a set of strong baselines: the
existing EL systems that were used as a build-
ing block for QA before and a model that uses
manual features from the previous work on
noisy data.

(ii) We design and implement an entity linking
system that models contexts of variable gran-
ularity to detect and disambiguate entity men-
tions. To the best of our knowledge, we are
the first to present a unified end-to-end neural
model for entity linking for noisy data that
operates on different context levels and does
not rely on manual features. Our architec-
ture addresses the challenges of entity linking
on question answering data and outperforms
state-of-the-art EL systems.

Code and Datasets Our system can be applied
on any QA dataset. The complete code as well
as the scripts that produce the evaluation data can
be found here: https://github.com/UKPLab/

starsem2018-entity-linking.
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Figure 2: Distribution of entity categories in
the NEEL 2014, WebQSP and GraphQuestions
datasets

2 Motivation and Related Work

Several benchmarks exist for EL on Wikipedia texts
and news articles, such as ACE (Bentivogli et al.,
2010) and CoNLL-YAGO (Hoffart et al., 2011).
These datasets contain multi-sentence documents
and largely cover three types of entities: Location,
Person and Organization. These types are com-
monly recognized by named entity recognition sys-
tems, such as Stanford NER Tool (Manning et al.,
2014). Therefore in this scenario, an EL system
can solely focus on entity disambiguation.

In the recent years, EL on Twitter data has
emerged as a branch of entity linking research. In
particular, EL on tweets was the central task of
the NEEL shared task from 2014 to 2016 (Rizzo
et al., 2017). Tweets share some of the challenges
with QA data: in both cases the input data is short
and noisy. On the other hand, it significantly dif-
fers with respect to the entity types covered. The
data for the NEEL shared task was annotated with
7 broad entity categories, that besides Location,
Organization and Person include Fictional Charac-
ters, Events, Products (such as electronic devices
or works of art) and Things (abstract objects). Fig-
ure 2 shows the distribution of entity categories in
the training set from the NEEL 2014 competition.
One can see on the diagram that the distribution
is mainly skewed towards 3 categories: Location,
Person and Organization.
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Figure 2 also shows the entity categories present
in two QA datasets. The distribution over the cate-
gories is more diverse in this case. The WebQues-
tions dataset includes the Fictional Character and
Thing categories which are almost absent from the
NEEL dataset. A more even distribution can be ob-
served in the GraphQuestion dataset that features
many Events, Fictional Characters and Professions.
This means that a successful system for EL on ques-
tion data needs to be able to recognize and to link
all categories of entities. Thus, we aim to show
that comprehensive modeling of different context
levels will result in a better generalization and per-
formance across various entity categories.

Existing Solutions The early machine learning
approaches to EL focused on long well-formed
documents (Bunescu and Pasca, 2006; Cucerzan,
2007; Han and Sun, 2012; Francis-Landau et al.,
2016). These systems usually rely on an off-the-
shelf named entity recognizer to extract entity men-
tions in the input. As a consequence, such ap-
proaches can not handle entities of types other than
those that are supplied by the named entity rec-
ognizer. Named entity recognizers are normally
trained to detect mentions of Locations, Organiza-
tions and Person names, whereas in the context of
QA, the system also needs to cover movie titles,
songs, common nouns such as ‘president’ etc.

To mitigate this, Cucerzan (2012) has introduced
the idea to perform mention detection and entity
linking jointly using a linear combination of man-
ually defined features. Luo et al. (2015) have
adopted the same idea and suggested a probabilis-
tic graphical model for the joint prediction. This is
essential for linking entities in questions. For exam-
ple in “who does maggie grace play in taken?”, it is
hard to distinguish between the usage of the word
‘taken’ and the title of a movie ‘Taken’ without
consulting a knowledge base.

Sun et al. (2015) were among the first to use
neural networks to embed the mention and the en-
tity for a better prediction quality. Later, Francis-
Landau et al. (2016) have employed convolutional
neural networks to extract features from the doc-
ument context and mixed them with manually de-
fined features, though they did not integrate it with
mention detection. Sil et al. (2018) continued the
work in this direction recently and applied convo-
lutional neural networks to cross-lingual EL.

The approaches that were developed for Twit-
ter data present the most relevant work for EL

on QA data. Guo et al. (2013b) have created a
new dataset of around 1500 tweets and suggested a
Structured SVM approach that handled mention de-
tection and entity disambiguation together. Chang
et al. (2014) describe the winning system of the
NEEL 2014 competition on EL for short texts: The
system adapts a joint approach similar to Guo et al.
(2013b), but uses the MART gradient boosting al-
gorithm instead of the SVM and extends the fea-
ture set. The current state-of-the-art system for
EL on noisy data is S-MART (Yang and Chang,
2015) which extends the approach from Chang et al.
(2014) to make structured predictions. The same
group has subsequently applied S-MART to extract
entities for a QA system (Yih et al., 2015).

Unfortunately, the described EL systems for
short texts are not available as stand-alone tools.
Consequently, the modern QA approaches mostly
rely on off-the-shelf entity linkers that were de-
signed for other domains. Reddy et al. (2016) have
employed the Freebase online API that was since
deprecated. A number of question answering sys-
tems have relied on DBPedia Spotlight to extract
entities (Lopez et al., 2016; Chen et al., 2016). DB-
Pedia Spotlight (Mendes et al., 2011) uses doc-
ument similarity vectors, word embeddings and
manually defined features such as entity frequency.
We are addressing this problem in our work by pre-
senting an architecture specifically targeted at EL
for QA data.

The Knowledge Base Throughout the ex-
periments, we use the Wikidata3 open-domain
KB (Vrandečić and Krötzsch, 2014). Among the
previous work, the common choices of a KB in-
clude Wikipedia, DBPedia and Freebase. The
entities in Wikidata directly correspond to the
Wikipedia articles, which enables us to work with
data that was previously annotated with DBPedia.
Freebase was discontinued and is no longer up-to-
date. However, most entities in Wikidata have been
annotated with identifiers from other knowledge
sources and databases, including Freebase, which
establishes a link between the two KBs.

3 Entity Linking Architecture

The overall architecture of our entity linking system
is depicted in Figure 3. From the input question
x we extract all possible token n-grams N up to a

3 At the moment, Wikidata contains more than 40 million
entities and 350 million relation instances:
https://www.wikidata.org/wiki/Special:
Statistics

67



x = what are taylor swift’s albums?

Step 1. consider all n-grams

N = ngrams(x), i = 0

i < |N |,
n = N [i]

Step 2. entity candidates for an n-gram

C = entity candidates(n)

wikidata

Full text
search

Step 3. score the n-gram with the model

pn,pc = M(x, n, C)

i = i+ 1

Step 4. compute the global assignment of entities

G = global assignment(pn,pc, n,x|n ∈ N)

Figure 3: Architecture of the entity linking system

certain length as entity mention candidates (Step 1).
For each n-gram n, we look it up in the knowledge
base using a full text search over entity labels (Step
2). That ensures that we find all entities that contain
the given n-gram in the label. For example for
a unigram ‘obama’, we retrieve ‘Barack Obama’,
‘Michelle Obama’ etc. This step produces a set of
entity disambiguation candidates C for the given n-
gram n. We sort the retrieved candidates by length
and cut off after the first 1000. That ensures that
the top candidates in the list would be those that
exactly match the target n-gram n.

In the next step, the list of n-grams N and the
corresponding list of entity disambiguation candi-
dates are sent to the entity linking model (Step 3).
The model jointly performs the detection of correct
mentions and the disambiguation of entities.

3.1 Variable Context Granularity Network

The neural architecture (Variable Context Granular-
ity, VCG) aggregates and mixes contexts of differ-
ent granularities to perform a joint mention detec-
tion and entity disambiguation. Figure 4 shows
the layout of the network and its main compo-
nents.granularity level. The input to the model is a
list of question tokens x, a token n-gram n and a list
of candidate entities C. Then the model is a func-
tion M(x,n,C) that produces a mention detection
score pn for each n-gram and a ranking score pc for
each of the candidates c ∈C: pn,pc = M(x,n,C).

Dilated Convolutions To process sequential
input, we use dilated convolutional networks

(DCNN). Strubell et al. (2017) have recently shown
that DCNNs are faster and as effective as recurrent
models on the task of named entity recognition.
We define two modules: DCNNw and DCNNc for
processing token-level and character-level input
respectively. Both modules consist of a series of
convolutions applied with an increasing dilation, as
described in Strubell et al. (2017). The output of
the convolutions is averaged and transformed by a
fully-connected layer.

Context Components The token component
corresponds to sentence-level features normally
defined for EL and encodes the list of question
tokens x into a fixed size vector. It maps the tokens
in x to dw-dimensional pre-trained word embed-
dings, using a matrix W ∈ R|Vw|×dw , where |Vw| is
the size of the vocabulary. We use 50-dimensional
GloVe embeddings pre-trained on a 6 billion to-
kens corpus (Pennington et al., 2014). The word
embeddings are concatenated with dp-dimensional
position embeddings Pw ∈ R3×dp that are used to
denote the tokens that are part of the target n-gram.
The concatenated embeddings are processed by
DCNNw to get a vector os.

The character component processes the target to-
ken n-gram n on the basis of individual characters.
We add one token on the left and on the right to the
target mention and map the string of characters to
dz-character embeddings, Z∈R|Vz|×dz . We concate-
nate the character embeddings with dp-dimensional
position embeddings Pz ∈R|x|×dp and process them
with DCNNc to get a feature vector on.

We use the character component with the same
learned parameters to encode the label of a candi-
date entity from the KB as a vector ol. The param-
eter sharing between mention encoding and entity
label encoding ensures that the representation of a
mention is similar to the entity label.

The KB structure is the highest context level
included in the model. The knowledge base struc-
ture component models the entities and relations
that are connected to the candidate entity c. First,
we map a list of relations r of the candidate en-
tity to dr-dimensional pre-trained relations embed-
dings, using a matrix R ∈ R|Vr|×dr , where |Vr| is
the number of relation types in the KB. We trans-
form the relations embeddings with a single fully-
connected layer fr and then apply a max pooling
operation to get a single relation vector or per en-
tity. Similarly, we map a list of entities that are
immediately connected to the candidate entity e
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Figure 4: The architecture of the Variable Context Granularity Network for a single n-gram and an entity
candidate. The output vectors (oc,ot) are aggregated over all n-grams for the global assignment

to de-dimensional pre-trained entity embeddings,
using a matrix E ∈ R|Ve|×de , where |Ve| is the num-
ber of entities in the KB. The entity embeddings
are transformed by a fully-connected layer fe and
then also pooled to produce the output oe. The em-
bedding of the candidate entity itself is also trans-
formed with fe and is stored as od. To train the
knowledge base embeddings, we use the TransE
algorithm (Bordes et al., 2013).

Finally, the knowledge base lexical component
takes the labels of the relations in r to compute
lexical relation embeddings. For each r ∈ r, we
tokenize the label and map the tokens xr to word
embeddings, using the word embedding matrix W.
To get a single lexical embedding per relation, we
apply max pooling and transform the output with
a fully-connected layer frl . The lexical relation
embeddings for the candidate entity are pooled into
the vector orl.

Context Aggregation The different levels of
context are aggregated and are transformed by a
sequence of fully-connected layers into a final vec-
tor oc for the n-gram n and the candidate entity c.
The vectors for each candidate are aggregated into
a matrix O = [oc|c ∈C]. We apply element-wise

max pooling on O to get a single summary vector
s for all entity candidates for n.

To get the ranking score pc for each entity candi-
date c, we apply a single fully-connected layer gc

on the concatenation of oc and the summary vec-
tor s: pc = gc(oc‖s). For the mention detection
score for the n-gram, we separately concatenate the
vectors for the token context os and the character
context on and transform them with an array of
fully-connected layers into a vector ot. We con-
catenate ot with the summary vector s and apply
another fully-connected layer to get the mention
detection score pn = σ(gn(ot‖s)).

3.2 Global Entity Assignment

The first step in our system is extracting all possi-
ble overlapping n-grams from the input texts. We
assume that each span in the input text can only re-
fer to a single entity and therefore resolve overlaps
by computing a global assignment using the model
scores for each n-gram (Step 4 in Figure 3).

If the mention detection score pn is above the
0.5-threshold, the n-gram is predicted to be a cor-
rect entity mention and the ranking scores pc are
used to disambiguate it to a single entity candidate.
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N-grams that have pn lower than the threshold are
filtered out.

We follow Guo et al. (2013a) in computing the
global assignment and hence, arrange all n-grams
selected as mentions into non-overlapping combi-
nations and use the individual scores pn to compute
the probability of each combination. The com-
bination with the highest probability is selected
as the final set of entity mentions. We have ob-
served in practice a similar effect as descirbed by
Strubell et al. (2017), namely that DCNNs are able
to capture dependencies between different entity
mentions in the same context and do not tend to
produce overlapping mentions.

3.3 Composite Loss Function
Our model jointly computes two scores for each
n-gram: the mention detection score pn and the dis-
ambiguation score pc. We optimize the parameters
of the whole model jointly and use the loss function
that combines penalties for the both scores for all
n-grams in the input question:

L = ∑
n∈N

∑
c∈Cn

M (tn, pn) + tnD(tc, pc),

where tn is the target for mention detection and is
either 0 or 1, tc is the target for disambiguation and
ranges from 0 to the number of candidates |C|.

For the mention detection loss M , we include a
weighting parameter α for the negative class as the
majority of the instances in the data are negative:

M (tn, pn)=−tn log pn−α(1−tn) log(1− pn)

The disambiguation detection loss D is a maxi-
mum margin loss:

D(tc, pc) =
∑|C|i=0 max(0,(m− pc[tc]+ pc[i]))

|C| ,

where m is the margin value. We set m = 0.5,
whereas the α weight is optimized with the other
hyper-parameters.

3.4 Architecture Comparison
Our model architecture follows some of the ideas
presented in Francis-Landau et al. (2016): they sug-
gest computing a similarity score between an entity
and the context for different context granularities.
Francis-Landau et al. (2016) experiment on entity
linking for Wikipedia and news articles and con-
sider the word-level and document-level contexts

#Questions #Entities

WebQSP Train 3098 3794
WebQSP Test 1639 2002

GraphQuestions Test 2608 4680

Table 1: Dataset statistics

for entity disambiguation. As described above, we
also incorporate different context granularities with
a number of key differences: (1) we operate on
sentence level, word level and character level, thus
including a more fine-grained range of contexts;
(2) the knowledge base contexts that Francis-Lan-
dau et al. (2016) use are the Wikipedia title and
the article texts — we, on the other hand, employ
the structure of the knowledge base and encode
relations and related entities; (3) Francis-Landau
et al. (2016) separately compute similarities for
each type of context, whereas we mix them in a
single end-to-end architecture; (4) we do not rely
on manually defined features in our model.

4 Datasets

We compile two new datasets for entity linking
on questions that we derive from publicly avail-
able question answering data: WebQSP (Yih et al.,
2016) and GraphQuestions (Su et al., 2016).

WebQSP contains questions that were originally
collected for the WebQuestions dataset from web
search logs (Berant et al., 2013). They were man-
ually annotated with SPARQL queries that can be
executed to retrieve the correct answer to each ques-
tion. Additionally, the annotators have also selected
the main entity in the question that is central to find-
ing the answer. The annotations and the query use
identifiers from the Freebase knowledge base.

We extract all entities that are mentioned in the
question from the SPARQL query. For the main
entity, we also store the correct span in the text,
as annotated in the dataset. In order to be able to
use Wikidata in our experiments, we translate the
Freebase identifiers to Wikidata IDs.

The second dataset, GraphQuestions, was cre-
ated by collecting manual paraphrases for automat-
ically generated questions (Su et al., 2016). The
dataset is meant to test the ability of the system
to understand different wordings of the same ques-
tion. In particular, the paraphrases include various
references to the same entity, which creates a chal-
lenge for an entity linking system. The following
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P R F1

Heuristic baseline 0.286 0.621 0.392
Simplified VCG 0.804 0.654 0.721

VCG 0.823 0.646 0.724

Table 2: Evaluation results on the WEBQSP devel-
opment dataset (all entities)

are three example questions from the dataset that
contain a mention of the same entity:

(1) a. what is the rank of marvel’s iron
man?

b. iron-man has held what ranks?
c. tony stark has held what ranks?

GraphQuestions does not contain main entity
annotations, but includes a SPARQL query struc-
turally encoded in JSON format. The queries were
constructed manually by identifying the entities in
the question and selecting the relevant KB relations.
We extract gold entities for each question from the
SPARQL query and map them to Wikidata.

We split the WebQSP training set into train and
development subsets to optimize the neural model.
We use the GraphQuestions only in the evaluation
phase to test the generalization power of our model.
The sizes of the constructed datasets in terms of the
number of questions and the number of entities are
reported in Table 1. In both datasets, each question
contains at least one correct entity mention.

5 Experiments

5.1 Evaluation Methodology

We use precision, recall and F1 scores to evaluate
and compare the approaches. We follow Carmel
et al. (2014) and Yang and Chang (2015) and define
the scores on a per-entity basis. Since there are
no mention boundaries for the gold entities, an
extracted entity is considered correct if it is present
in the set of the gold entities for the given question.
We compute the metrics in the micro and macro
setting. The macro values are computed per entity
class and averaged afterwards.

For the WebQSP dataset, we additionally per-
form a separate evaluation using only the informa-
tion on the main entity. The main entity has the
information on the boundary offsets of the correct
mentions and therefore for this type of evaluation,
we enforce that the extracted mention has to over-

emb. size filter size
dw dz de dr dp DCNNw DCNNc α

50 25 50 50 5 64 64 0.5

Table 3: Best configuration for the VCG model

lap with the correct mention. QA systems need at
least one entity per question to attempt to find the
correct answer. Thus, evaluating using the main
entity shows how the entity linking system fulfills
this minimum requirement.

5.2 Baselines

Existing Systems In our experiments, we compare
to DBPedia Spotlight that was used in several QA
systems and represents a strong baseline for entity
linking4. In addition, we are able to compare to the
state-of-the-art S-MART system, since their output
on the WebQSP datasets was publicly released5.
The S-MART system is not openly available, it was
first trained on the NEEL 2014 Twitter dataset and
later adapted to the QA data (Yih et al., 2015).

We also include a heuristics baseline that ranks
candidate entities according to their frequency in
Wikipedia. This baseline represents a reasonable
lower bound for a Wikidata based approach.

Simplified VCG To test the effect of the end-to-
end context encoders of the VCG network, we de-
fine a model that instead uses a set of features com-
monly suggested in the literature for EL on noisy
data. In particular, we employ features that cover
(1) frequency of the entity in Wikipedia, (2) edit dis-
tance between the label of the entity and the token
n-gram, (3) number of entities and relations imme-
diately connected to the entity in the KB, (4) word
overlap between the input question and the labels
of the connected entities and relations, (5) length
of the n-gram. We also add an average of the word
embeddings of the question tokens and, separately,
an average of the embeddings of tokens of entities
and relations connected to the entity candidate. We
train the simplified VCG model by optimizing the
same loss function in Section 3.3 on the same data.

5.3 Practical Considerations

The hyper-parameters of the model, such as the
dimensionality of the layers and the size of embed-

4We use the online end-point: http://www.
dbpedia-spotlight.org/api

5https://github.com/scottyih/STAGG
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Main entity All entities
P R F1 P R F1 mP mR mF1

DBPedia Spotlight 0.668 0.595 0.629 0.705 0.514 0.595 0.572 0.392 0.452
S-MART 0.634 0.899 0.744 0.666 0.772 0.715 0.607 0.610 0.551

Heuristic baseline 0.282 0.694 0.401 0.302 0.608 0.404 0.330 0.537 0.378
Simplified VCG 0.804 0.728 0.764 0.837 0.621 0.713 0.659 0.494 0.546

VCG 0.793 0.766 0.780 0.826 0.653 0.730 0.676 0.519 0.568

Table 4: Evaluation results on the WEBQSP test dataset, the m prefix stands for macro

P R F1

DBPedia Spotlight 0.386 0.453 0.417
VCG 0.589 0.354 0.442

Table 5: Evaluation results on GRAPHQUESTIONS

dings, are optimized with random search on the
development set. The model was particularly sen-
sitive to tuning of the negative class weight α (see
Section 3.3). Table 3 lists the main selected hyper-
parameters for the VCG model6 and we also report
the results for each model’s best configuration on
the development set in Table 2.

5.4 Results
Table 4 lists results for the heuristics baseline, for
the suggested Variable Context Granularity model
(VCG) and for the simplified VCG baseline on the
test set of WebQSP. The simplified VCG model
outperforms DBPedia Spotlight and achieves a re-
sult very close to the S-MART model. Considering
only the main entity, the simplified VCG model
produces results better than both DBPedia Spot-
light and S-MART. The VCG model delivers the
best F-score across the all setups. We observe that
our model achieves the most gains in precision
compared to the baselines and the previous state-
of-the-art for QA data.

VCG constantly outperforms the simplified
VCG baseline that was trained by optimizing the
same loss function but uses manually defined fea-
tures. Thereby, we confirm the advantage of the
mixing context granularities strategy that was sug-
gested in this work. Most importantly, the VCG
model achieves the best macro result which indi-
cates that the model has a consistent performance
on different entity classes.

6The complete list of hyper-parameters and model charac-
teristics can be found in the accompanying code repository.
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Figure 5: Performance accross entity classes on
WEBQSP test dataset

We further evaluate the developed VCG archi-
tecture on the GraphQuestions dataset against the
DBPedia Spotlight. We use this dataset to evalu-
ate VCG in an out-of-domain setting: neither our
system nor DBPedia Spotlight were trained on it.
The results for each model are presented in Table 5.
We can see that GraphQuestions provides a much
more difficult benchmark for EL. The VCG model
shows the overall F-score result that is better than
the DBPedia Spotlight baseline by a wide margin.
It is notable that again our model achieves higher
precision values as compared to other approaches
and manages to keep a satisfactory level of recall.

Analysis In order to better understand the per-
formance difference between the approaches and
the gains of the VCG model, we analyze the re-
sults per entity class (see Figure 5). We see that
the S-MART system is slightly better in the disam-
biguation of Locations, Person names and a similar
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Main entity All entities
P R F1 P R F1 mP mR mF1

VCG 0.793 0.766 0.780 0.826 0.653 0.730 0.676 0.519 0.568
w/o token context 0.782 0.728 0.754 0.812 0.618 0.702 0.664 0.474 0.530

w/o character context 0.802 0.684 0.738 0.820 0.573 0.675 0.667 0.404 0.471
w/o KB structure context 0.702 0.679 0.690 0.728 0.576 0.643 0.549 0.427 0.461

w/o KB lexical context 0.783 0.732 0.756 0.807 0.617 0.699 0.643 0.454 0.508

Table 6: Ablation experiments for the VCG model on WEBQSP

category of Fictional Character names, while it has
a considerable advantage in processing of Profes-
sions and Common Nouns. Our approach has an
edge in such entity classes as Organization, Things
and Products. The latter category includes movies,
book titles and songs, which are particularly hard
to identify and disambiguate since any sequence
of words can be a title. VCG is also considerably
better in recognizing Events. We conclude that
the future development of the VCG architecture
should focus on the improved identification and
disambiguation of professions and common nouns.

To analyze the effect that mixing various context
granularities has on the model performance, we
include ablation experiment results for the VCG
model (see Table 6). We report the same scores as
in the main evaluation but without individual model
components that were described in Section 3.

We can see that the removal of the KB structure
information encoded in entity and relation embed-
dings results in the biggest performance drop of
almost 10 percentage points. The character-level in-
formation also proves to be highly important for the
final state-of-the-art performance. These aspects of
the model (the comprehensive representation of the
KB structure and the character-level information)
are two of the main differences of our approach to
the previous work. Finally, we see that excluding
the token-level input and the lexical information
about the related KB relations also decrease the
results, albeit less dramatically.

6 Conclusions

We have described the task of entity linking on
QA data and its challenges. The suggested new
approach for this task is a unifying network that
models contexts of variable granularity to extract
features for mention detection and entity disam-
biguation. This system achieves state-of-the-art
results on two datasets and outperforms the pre-

vious best system used for EL on QA data. The
results further verify that modeling different types
of context helps to achieve a better performance
across various entity classes (macro f-score).

Most recently, Peng et al. (2017) and Yu et al.
(2017) have attempted to incorporate entity linking
into a QA model. This offers an exciting future di-
rection for the Variable Context Granularity model.
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