
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1063–1067
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Jiangnan at SemEval-2018 Task 11: Deep Neural Network with Attention
Method for Machine Comprehension Task

Jiangnan Xia
Alibaba Group

Hangzhou, China
jiangnan xjn@alibaba-inc.com

Abstract

This paper describes our submission for the
International Workshop on Semantic Evalua-
tion (SemEval-2018) shared task 11– Machine
Comprehension using Commonsense Knowl-
edge (Ostermann et al., 2018b). We use a
deep neural network model to choose the cor-
rect answer from the candidate answers pair
when the document and question are given.
The interactions between document, question
and answers are modeled by attention mech-
anism and a variety of manual features are
used to improve model performance. We also
use CoVe (McCann et al., 2017) as an exter-
nal source of knowledge which is not men-
tioned in the document. As a result, our sys-
tem achieves 80.91% accuracy on the test data,
which is on the third place of the leaderboard.

1 Introduction

In recent years, machine reading comprehension
(MRC) which attempts to enable machines to an-
swer questions when given a set of documents, has
attracted great attentions. Several MRC datasets
have been released such as the Stanford Question
Answering Dataset (SQuAD) (Rajpurkar et al.,
2016) and the Microsoft MAchine Reading COm-
prehension Dataset (MS-MARCO) (Nguyen et al.,
2016). These datasets provide large scale of man-
ually created data, greatly inspired the research in
this field. And a series of neural network model,
such as BiDAF (Seo et al., 2016), R-Net (Wang
et al., 2017), have achieved promising results on
these evaluation tasks. However, machine read-
ing comprehension is still a difficult task because
without knowledge, machines cannot really under-
stand the question and make a correct answer.

As an effort to discover how machine read-
ing comprehension systems would be benefited
from commonsense knowledge, (Ostermann et al.,
2018b) developed the Machine Comprehension

using Commonsense Knowledge task. In this task,
commonsense knowledge is given as the form of
script knowledge. Script knowledge is defined as
the knowledge about everyday activities which is
mentioned in narrative documents. For each doc-
ument, a series questions are asked and each ques-
tion is associated with a pair of candidate answers.
Machines have to choose which is the correct an-
swer. To let machines make correct decisions, ex-
plicit information which can be found in the doc-
ument and external commonsense knowledge are
both required. Table 1 shows an example of the
dataset in this task.

In this paper, we make a description about our
submission system for the task. The system is
based on a deep neural network model. The input
of the model is a (document, question, answer)
triple and the output is the probability that the an-
swer is the correct one for the given document and
question. We also combine the neural network
model with a variety of manual features, including
word exact match features and token features such
as part-of-speech (POS) ,named entity recognition
(NER) and term frequency (TF). These manual
features are helpful in solving the problem that the
correct answer can be easily found in the given
document.

Furthermore, for more complicated problem
that the answer is not explicitly mentioned in the
document, we try to model the interactions be-
tween document, question and answer by comput-
ing the attention score of question to document
and question to answer respectively, which is de-
scribed in (Lee et al., 2016). These features add
soft alignments between similar but non-identical
words (Chen et al., 2017). We evaluate our sys-
tem on the shared task and obtain 80.91% accu-
racy on the test set, which is on the third place of
the leaderboard.

The rest of this paper is organized as follows.

1063



Document:
I went into my bedroom and flipped the light
switch. Oh, I see that the ceiling lamp is not
turning on. It must be that the light bulb needs
replacement. I go through my closet and find a
new light bulb that will fit this lamp and place
it in my pocket. I also get my stepladder and
place it under the lamp. I make sure the light
switch is in the off position. I climb up the lad-
der and unscrew the old light bulb. I place the
old bulb in my pocket and take out the new one.
I then screw in the new bulb. I climb down the
stepladder and place it back into the closet. I
then throw out the old bulb into the recycling
bin. I go back to my bedroom and turn on the
light switch. I am happy to see that there is
again light in my room.
Question1: Which room did the light go out
in?
0. Kitchen. (Wrong)
1. Bedroom. (Correct)
Question2: Was the light bulb still hot?
0. yes. (Wrong)
1. No. (Correct)

Table 1: An example from the machine comprehen-
sion using commonsense knowledge task (Ostermann
et al., 2018b). The first line shows the document and
the following lines show question and answer pair re-
spectively. The answer of question1 can be easily
found in the text while answering question2 requires
external knowledge which is not mentioned in the text.

Section 2 describes the submission system. Sec-
tion 3 presents and discusses the experiment re-
sults. Section 4 makes a conclusion about our
work.

2 Model

In this task, a document (D), a question (Q), and
a pair of answers (A0, A1) are given and a ma-
chine comprehension system should choose the
correct answer from the answers pair. We attempt
to solve this problem by leveraging a deep neural
network model which can generate the probability
pθ(Ai|D,Q), i = 0 or 1 that the input answer is
correct for the given document and question. The
system predicts the probability for each answer in
(A0, A1) respectively and decides which is the cor-
rect answer by comparing their probability scores.
We represent the set of all trainable parameters of

the neural network model as θ. The model basi-
cally consists 3 parts: an encode layer, an inter-
action layer and a final inference layer, which is
depicted in figure 1. Below we will discuss the
model in more detail.

2.1 Encode layer

We first represent all tokens of document
{d1, ..., dm}, question {q1, ..., qn} and answer
{a1, ..., al} as sequences of word embeddings
{Ed1 , ..., Edm}, {Eq1 , ..., Eqn} and {Ea1 , ..., Eal },
where m, n and l are sequence lengths of docu-
ment, question and answer respectively. In this
task, we use the 300-dimensional 840B Glove
word embeddings (Pennington et al., 2014). We
then pass each sequence through a multi-layer
bidirectional long short term memory network
(BiLSTM) to get the word level semantic repre-
sentations of each sequence:

hdj = BiLSTMj({Edi }mi=1) (1)

hqj = BiLSTMj({Eqi }ni=1) (2)

haj = BiLSTMj({Eai }li=1) (3)

The index j represents the jth BiLSTM layer.
We concat all the output units of each BiLSTM
layer and get the final word level representations:
hd, hq and ha. The BiLSTM layers used to
encode document, question and answer sequence
share same parameters in order to reduce the num-
ber of trainable parameters and make the model
uneasily overfitting.

2.2 Interaction layer

This layer models the interactions between doc-
ument, question and answer. We first align each
word representation vectors in the question se-
quence to document and answer by leveraging at-
tention mechanism and get question-aware repre-
sentation Attd, Atta for document and answer re-
spectively:

Attdi = Σjs
d
i,jh

q
j (4)

Attai = Σjs
a
i,jh

q
j (5)

The attention score sdi,j captures the similarity
between the word representation vector di and qj
in document sequence and question sequence re-
spectively. And sai,j captures the similarity be-
tween answer vector ai and question vector qj .

1064



Figure 1: Neural network model architecture for the machine comprehension task

We get sdi,j and sai,j by computing the dot prod-
ucts between the nonlinear mappings of two word
representation vectors:

sdi,j =
exp(α(di) · α(qj))

Σj′exp(α(di) · α(qj′))
(6)

sai,j =
exp(α(ai) · α(qj))

Σj′exp(α(ai) · α(qj′))
(7)

α(·) is a single dense layer with ReLU nonlin-
earity. We concat Attdi and Attai behind each hdi
and hai and get new word representation vectors rd

and ra for document and answer.
Following (Chen et al., 2017), we combine the

model with a variety of manual features, includ-
ing word exact match features and token features.
For exact match features, we use three binary fea-
tures indicating whether a token in d and a can
be exactly matched by one token in q, either in
its original, lowercase or lemma form. For token
features, we use part-of-speech (POS), named en-
tity recognition (NER) and term frequency (TF).
For document and answer, we combine the man-
ual features as vectors fdi , fai and concat to rdi , rai
and get new word level representation vectors r′di
and r′ai :

r′d = {r′di }mi=1 = {[rdi ; fdi ]}mi=1 (8)

r′a = {r′ai }li=1 = {[rai ; fai ]}li=1 (9)

2.3 Inference layer
In inference layer, we first convert the document
and answer sequence r′d, r′a into fixed length

vectors with weighted pooling method and get se-
quence level representation vectors Rd and Ra:

Rd = Σm
i=1u

d
i r

′d
i (10)

Ra = Σl
i=1u

a
i r

′a
i (11)

udi =
exp(wd · r′di )

Σm
j′=1exp(w

d · r′dj′ )
(12)

uai =
exp(wa · r′ai )

Σl
j′=1exp(w

a · r′aj′ )
(13)

The weight vectorwd andwa are learnable param-
eters of the model.

As we haven’t use any external source of knowl-
edge, we attempt to use other pre-trained language
model as external knowledge, in order to get more
implicit information which is not mentioned in the
document. Here we use CoVe (McCann et al.,
2017) in document and answer sequences. The
Glove embedding of each token will pass through
a pre-trained BiLSTM layer. The BiLSTM layer
outputs a sequence of CoVe vectors of document
and answer cd = {cdi }mi=1, ca = {cai }li=1. We
then convert the sequences into fixed length vec-
tors Cd and Ca by using the weighted pooling
method which is mentioned above.

We fuse the pooled CoVe vectors with the se-
quence level representation vectors with semantic
fusion unit (SFU) (Hu et al., 2017) and get the fi-
nal sequence level representation vectors R′

d and
R′
a:

R′
d = SFUd(Rd, Cd) (14)

1065



R′
a = SFUa(Ra, Ca) (15)

Finally, we represent the probability that the an-
swer is correct by computing the bilinear match
score of document and answer vectors:

P = σ(R′
dWR′

a) (16)

W is a trainable matrix and σ(·) is the sigmoid
function. In this task, we use this model to predict
the probability for each answer in (A0, A1) and
decide which is the correct one by selecting the
answer with higher probability score.

3 Experiments

3.1 Datasets

The statistics of official training, development and
test data are shown in Table 2.

Training Dev Test
Num of examples 9,731 1,411 2,797

Table 2: Statistics of the official datasets

We remove the words occurring less than 2
times and finally get about 12000 words in the
vocabulary. We keep most pre-trained word em-
beddings fixed during training and only fine-tune
the 100 most frequent words. For manual features,
we get POS and NER features by using Stanford
CoreNLP1 toolkits.

3.2 Experimental Settings

We implement our model by using PyTorch 2. The
model is trained in the given training set and we
choose the model which performs best on the de-
velopment set among training epochs. We train the
model with mini batch size 32. We use two layers
BiLSTM with 128 hidden units. A dropout rate of
0.4 is applied to word embeddings and all hidden
units in BiLSTM layers. We use logistic loss as
the loss function optimized by using Adamax op-
timizer (Kingma and Ba, 2014) with learning rate
η = 0.002.

3.3 Results

The performances of our model are depicted in
Table 3. The single model achieves accuracy of
85.05% on the development data and 79.03% on

1https://stanfordnlp.github.io/CoreNLP/
2http://pytorch.org/

the test data. The ensemble model which we fi-
nally submitted to the shared task achieves ac-
curacy of 87.30% on the development data and
80.91% on the test data. From the result we can
see that there is a gap between development data
and test data for both single model and ensemble
model. The model overfits the development data
but does not perform well on the test data. Shows
that the robustness of our model needs to be im-
proved.

We conduct ablation analysis of different fea-
tures used in the model on the development data.
Table 4 shows the ablation analysis results from
which we can see that all the features we used can
contribute to model performance. Without manual
features, the model accuracy is 83.70%, which is
1.3% less than the full model. and without CoVe,
the accuracy drops 1.8%. The accuracy drops
6.6% when neither manual features nor CoVe are
used. The results show that the model requires
both explicit information which can be found in
the document and external source of knowledge to
make correct decisions.

Model Acc.(Dev) Acc.(Test)
Single Model 0.8505 0.7903
Ensemble Model 0.8730 0.8091

Table 3: Results of the single and ensemble model on
development data and test data.

Features Acc.(Dev)
Full 0.8505
w/o Manual features 0.8370
w/o CoVe 0.8320
w/o Manual features and CoVe 0.7845

Table 4: Ablation analysis of features.

4 Conclusion

In this paper, we make a description of our sub-
mitted system to the SemEval-2018 shared task
11. The system is based on a deep neural network
model which will choose the correct answer from
the answers pair when the document and question
are given. We combine the model with a variety
of manual features which are helpful in solving
the problem that the correct answer can be eas-
ily found in the given document. For the prob-
lem that the answer is not explicitly mentioned in
the document, we model the interactions between

1066



document, question and answers by using atten-
tion mechanism. We also attempt to use CoVe as
an external source of knowledge. We conduct ex-
periment and prove that the features we used are
helpful in contributing to the model performance.
Our system achieves 80.91% accuracy on the test
data, which is on the third place of the leaderboard.

References
Danqi Chen, Adam Fisch, Jason Weston, and Antoine

Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Association for Computa-
tional Linguistics (ACL).

Minghao Hu, Yuxing Peng, and Xipeng Qiu. 2017.
Mnemonic reader for machine comprehension.
arXiv preprint arXiv:1705.02798.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kenton Lee, Shimi Salant, Tom Kwiatkowski, Ankur
Parikh, Dipanjan Das, and Jonathan Berant. 2016.
Learning recurrent span representations for ex-
tractive question answering. arXiv preprint
arXiv:1611.01436.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. In Advances in Neural In-
formation Processing Systems, pages 6297–6308.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms marco: A human generated machine
reading comprehension dataset. arXiv preprint
arXiv:1611.09268.

Simon Ostermann, Michael Roth, Modi Ashutosh, Ste-
fan Thater, and Manfred Pinkal. 2018b. Semeval-
2018 task 11: Machine comprehension using com-
monsense knowledge. In Proceedings of Interna-
tional Workshop on Semantic Evaluation(SemEval-
2018).

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603.

Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang,
and Ming Zhou. 2017. Gated self-matching net-
works for reading comprehension and question an-
swering. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 189–198.

1067


