
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1053–1057
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

CSReader at SemEval-2018 Task 11: Multiple Choice Question
Answering as Textual Entailment

Zhengping Jiang
Laboratory of Machine Perception

Peking University
tony.jiang.zhengping@gmail.com

Qi Sun
Laboratory of Machine Perception

Peking University
1500012917@pku.edu.cn

Abstract

In this document we present an end-to-end
machine reading comprehension system that
solves multiple choice questions with a tex-
tual entailment perspective. Since some of
the knowledge required is not explicitly men-
tioned in the text, we try to exploit common
sense knowledge by using pretrained word em-
beddings during contextual embeddings and
by dynamically generating a weighted repre-
sentation of related script knowledge. In the
model two kinds of prediction structure are en-
sembled, and the final accuracy of our system
is 10 percent higher than the naiive baseline.

1 Introduction

K. M. Arivuchelvan et al.(2017) stated that ma-
chine reading comprehension can be defined as
a task that deals with the automatic understand-
ing of texts. In their paper, it was also men-
tioned that machine comprehension can be eval-
uated by two methods, namely (1) translating the
text into formal language representations and eval-
uating it using structured queries. (2) evaluat-
ing it through natural language questions. Re-
cently a lot of datasets are available for eval-
uating machine reading comprehension systems,
for example, there are SQuAD(Rajpurkar et al.,
2016) and the MCTest(Richardson et al., 2013).
On many of these datasets human-like perfor-
mance has been achieved. However, one of the
biggest challenges in machine comprehension is
how to provide common sense knowledge regard-
ing daily events to machines(Mostafazadeh et al.,
2016). The SemEval2018-Task11(Ostermann
et al., 2018) provides a dataset containing ques-
tions that can only be answered with the help of
common sense knowledge.To address this prob-
lem, we first propose a model to solve normal
reading comprehension problems and then try
to modify the model to embody common sense
knowledge. In section two, we give a brief in-

troduction to ideas and models that might be use-
ful to a comprehensive understanding of our work.
Section three carefully describes our model imple-
mentation, and why we chose this kind of model
structure. And section four briefly examines the
datasets used. Section five provides a simple eval-
uation of our result. Finally, our conclusion can be
found in section six.

2 Background Knowledge

In this section, we present some basic knowledge
required for a comprehensive understanding of our
model. We first give a basic introduction to RNN
models and the implementation of GRU Cell, then
cast a little glance upon the textual entailment
problems.

2.1 Recurent Neural Network

Lipton et al.(2015) stated that Recurrent neural
networks (RNNs) are “connectionist models with
the ability to selectively pass information across
sequence steps, while processing sequential data
one element at a time.” An RNN model captures
features of a sequence by updating a hidden set of
variables at every input element, as illustrated in
figure 1. In many language modelling tasks, the
output of every RNN iteration step will simply be
a prediction of the one-hot representation of the
next element in the sequence. However, as we in-
tended to train our model end-to-end, we will not
care much about the output of the RNN model, but
pay attention instead to the hidden state because
it is likely to be a contextual representation influ-
enced by every input element.

2.2 GRU Cell

One of the commonly used RNN hidden units is
LSTM (Hochreiter and Schmidhuber, 1997). This
kind of hidden unit can retain short-term memory
for a long time during sequence processing, thus

1053



W

V

W

U

V

W

U

V

W

U

st−1 st st+1

xt−1 xt xt+1

ot−1 ot ot+1

Figure 1: An illustration of unfolded RNN cells.

is able to recognize long-term dependency infor-
mation. GRU Cell (Cho et al., 2014) is inspired
by LSTM, and is simpler to compute. For each
timestep t, two gating vector is computed, i.e., the
reset gate r and the update gate z by

rj =σ([Wrx]j + [Urh
<t−1>]j)

zj =σ([Wzx]j + [Uzh
<t−1>]j)

Where x is the input vector and h is the hidden-
state vector, and [·]j means the jth element of a
given vector. W(·) U(·) are matrix parameters to be
trained. With these variables defined, the hidden
state can be updated as

h<t>
j = zjh

<t−1>
j + (1− zj)h̃<t>

j

where h̃ is calculated as

h̃<t>
j = φ([Wx]j + [U(r � h<t−1>)]j)

Therefore with the interaction of these two gate
the cell is able to learn a pattern whether to reset
the hidden state using current input, or to retain the
previous hidden state largely.

2.3 Textual Entailment Model

We try to first adapt an existing textual entail-
ment model to this machine comprehension prob-
lem. The model is first proposed by Rocktaschel et
al. (2015)., in which the premise is first contextu-
ally encoded, then a hypothesis-to-premise word
by word attention is calculated. The model im-
plicitly modify a hidden variable rt to regulate the
attention distribution at timestep t as

Mt =tanh(WyY+ (Whht +Wrrt−1)⊗ eL)
αt =softmax(wTMt)

rt =YαT
t + tanh(Wtrt−1)

Here we have maintained the original symbol
usage of Rocktaschel et al., where W(·) and U(·)
are variable matrices to be trained, and Y is the
matrix containing all hidden states of the premise

WWA GRU

wq wp

WWA

GRU

wa

dense

bilinear

denseensemble

Figure 2: Our basic model, where “dense” represents
fully connected layers, and WWA represents word-
wise-attention structure described in section 2.3.

encoder. We generally follow the framework of
this model, with modifications made to embody
common sense knowledge and answer multiple
choice questions.

3 Method

3.1 Bilinear Form
One of our classifiers uses the bilinear form. Ac-
cording to Milnor et al. (1973), a bilinear form is
a function:

β:X ×X → R

such that β(x, y) is R-linear as a function of x for
fixed y, and is R-linear as a function of y for fixed
x. Then such a bilinear form can be called as an in-
ner product on X . Thus this kind of inner product
can intuitively be used to measure similarity be-
tween two representations of the same space, we
design our bilinear classifier as follow:
Let αN

1 and αN
2 denote answer representations

generated by our word-wise-attention mechanism
from answers to text described in last section, and
let qN denote the question representation gener-
ated through the same process. Then we construct
a trainable matrix BN×N . Then we can get a sim-
ilarity score vector s where:

si = αT
i Bq

Then to normalize probability representation we
perform a softmax function upon s to give our
classification result.

3.2 Dense Classifier
We have another fully-connected classifier that
works as described below. Let αN

1 and αN
2 de-

note the answer representations generated with

1054



pure RNN layer with GRU cell (compare with
the WWA generated representation in the bilinear
classifier), and let qN denote the attended question
representation generated by word-wise-attention
mechanism described in subsection 2.3. Then we
concatenate these three representation as c:

c = [q : α1 : α2]

Then we use c as the input of a two layer fully-
connected neural network, where the hidden layer
in the middle has nodes only half the number of
the input, and the output layer is a softmaxed prob-
ability distribution representing our model’s final
choice.

3.3 General Model

Our model answers the multiple choice question
by first encoding the question and the passage
combined using the aforementioned textual entail-
ment encoding, and then using two different ques-
tion answering classifier to choose one of the two
choices. A weighted sum is then calculated from
the two answers each represented by a binary dis-
tribution. The weight is dynamically decided by a
feed-forward network taking two contextually en-
coded answer strings as input. First the contextual
embedded answer string representations of two
answer choices are calculated by RNN-encoder,
then we concatenate them and put them into a
feed-forward network to calculate weights for the
ensemble of the two aforementioned classifier. A
general illustration can be seen in figure 2. Here
GRU stands for an rnn unit using GRU cell, while
WWA stands for word-wise attention used in tex-
tual entailment. We can see that our model can be
trained end-to-end, and most of the weights can be
dynamically learnt during training.
During training, the text is tokenized and lemma-
tized using python NLTK (Bird and Loper, 2002),
and word stemming is not performed. We have
made this choice because which words should be
classified as stop word is hard to decide for an
RNN model that are likely to capture some of the
syntactic features of a given language.
The motivation for our using two different classi-
fier is that we want to softly provide different solu-
tions to different kinds of problems. The bilinear
classifier measures similarity between question-
attended and answer-attended contextual represen-
tations, which we believe should have better re-
sult on non-TF questions (By non-TF questions

we mean those open questions which can not be
answered by “Yes—True” or “No—False”), while
the dense classifier should do better on TF ques-
tions according to our expectation. A detailed
analysis of the model weights can be seen in next
section.

3.4 Common Sense Knowledge
However some of the question in the test set can-
not be answered merely with information provided
in the passage. We try to embody some kinds of
common sense knowledge representation into the
general model, however their influence to system
performance varies.

3.4.1 Word Embedding
In the general model, the embedding layer that
converts the one-hot representation of an input
word to its corresponding embedding vector is
trainable, and is optimized during training us-
ing back-propagation(Rumelhart et al., 1986) al-
gorithm. However, due to the relatively small
database size, we have finally marked the embed-
ding layer untrainable, and use GloVe (Pennington
et al., 2014) word embeddings instead.

3.4.2 Script Knowledge
The script knowledge we have chosen is the
OMCS (Singh et al., 2002) database. In the
database are presented many different step by step
descriptions of some daily events. To use this
script knowledge, we first encode every single de-
scription as a passage using the RNN that was
once used to encode our mission text. Then for ev-
ery event ei we calculate the event representation
as an average of each description representation in
that event category:

ei =
1

M

M∑

j=1

xNi,j

Where xi,j is the jth description representation of
event i. Then letE denote the event representation
matrix with its ith row representing event i, then
every time context representation rt is calculated,
we calculate a similarity vector s as:

s = softmax(EWrt)

Then if maxi<M (si) > t where t is a threshold
hyper-parameter, we substitute rt and its time se-
ries matrix with corresponding ei and its time se-
ries matrix. But as this treatment provided lit-
tle enhancement to our accuracy, we excluded

1055



System Accuracy
1st place 0.843

SCReader 0.631
baseline About 0.53

Figure 3: Table comparing performance of different
systems.

this structure from our final submission. Still we
believe that other common sense representation
might be helpful, like ConceptNet (Liu and Singh,
2004).

4 Experiment Setting and Evaluation

4.1 Overview
We Trained our model using SGD with weight
decay. No minibatch grouping is used, and we
trained our model on training set for 20000 time
steps. When near convergence, our model can
reach around 80% to 90% accuracy upon train-
ing set (The accuracy is sampled), and in last two
model we trained that finally lead to our only sub-
mission, we get an accuracy result of about 68%
on developing set. This accuracy is a little higher
than our final accuracy on test set. Our final result
compared with baseline and the first rank system
is given in the form.

4.2 Preprocessing
Before inputting the raw text into out model, we
first transform words into their one-hot represen-
tation without stemming and lemmatization, and
tokenization is done using NLTK toolkit. Then
we push the data through an embedding layer in
which the GloVe 50 was used due to time con-
cerns.

4.3 Further Discussion
Providing our scarce usage of common sense
knowledge, our model performed surprisingly
well on time deduction problems. Even in ques-
tions where an addition of fifteen minutes to thirty
minutes to get forty-five minutes as answer is re-
quired, our model successfully chose the right an-
swer. However, the ensemble didn’t work as we
intended. The bilinear classifier was unalterably
providing [0, 1] after softmaxing, probably due to
machine floating point precision limit. And the
result weight determiner always assign the GRU
related classifier a far greater weight. This is

Figure 4: The loss change of our two classifier.

very counterintuitive, and we are still trying hard
to find its real cause. Pre-trained word embed-
ding boosted our accuracy for about 5% - 10%
on developing set, and the training became faster
and converged far more quickly. To further anal-
yse the prediction ability of our two classification,
we trained our two classifer separately by 20,000
steps, and calculated a sampled loss function ac-
cording to 100 samples every 100 steps. The re-
sult is given in figure 4. We found that the bi-
linear classifier converges very slowly, while the
dense classifier, if used separately, has a converg-
ing tendency even in 20,000 timesteps. This result
corresponds with our observation that when used
together, the weights assigned to these two clas-
sifiers always converge to [0, 1], where little im-
portance is given to the bilinear classifier, which is
counter-intuitive.

5 Conclusions and Future Work

Our model is a machine comprehension model
based on textual entailment logics, and on the ba-
sis of previous works we made several renovations
to embody common sense knowledge representa-
tion. We finally reached accuracy for about 63%
on test dataset, however due to time limit, we have
never tried any fine-tuning techniques. Observing
this model we are able to say that it is useful to
have common sense knowledge data integrated to
machine comprehension problems, though a por-
per knowledge representation should be worked
out. We are currently switching to other kinds
of common sense knowledge representations, and
trying to devise new answer selection logics. From
the competition result it is very clear that there’s
still much space for our accuracy improvements.

1056



References
KM ARIVUCHELVAN and K LAKAHMI. 2017.

Reading comprehension system–a review. Indian J.
Sci. Res, 14(1):83–90.

Steven Bird and Edward Loper. 2002. Nltk: The natu-
ral language toolkit. CoRR, cs.CL/0205028.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Sepp Hochreiter and Jrgen Schmidhuber. 1997. Long
short-term memory. 9:1735–80.

Zachary C Lipton, John Berkowitz, and Charles
Elkan. 2015. A critical review of recurrent neu-
ral networks for sequence learning. arXiv preprint
arXiv:1506.00019.

Hugo Liu and Push Singh. 2004. Conceptneta practi-
cal commonsense reasoning tool-kit. BT technology
journal, 22(4):211–226.

John Willard Milnor and Dale Husemoller. 1973. Sym-
metric bilinear forms, volume 60. Springer.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A cor-
pus and evaluation framework for deeper under-
standing of commonsense stories. arXiv preprint
arXiv:1604.01696.

Simon Ostermann, Michael Roth, Ashutosh Modi, Ste-
fan Thater, and Manfred Pinkal. 2018. Semeval2018
task 11: Machine comprehension using common-
sense knowledge. In Proceedings of International
Workshop on Semantic Evaluation(SemEval2018).

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Matthew Richardson, Christopher JC Burges, and Erin
Renshaw. 2013. Mctest: A challenge dataset for
the open-domain machine comprehension of text.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
193–203.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomáš Kočiskỳ, and Phil Blunsom. 2015.
Reasoning about entailment with neural attention.
arXiv preprint arXiv:1509.06664.

David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. 1986. Learning representations by back-
propagating errors. nature, 323(6088):533.

Push Singh, Thomas Lin, Erik T Mueller, Grace Lim,
Travell Perkins, and Wan Li Zhu. 2002. Open mind
common sense: Knowledge acquisition from the
general public. In OTM Confederated International
Conferences” On the Move to Meaningful Internet
Systems”, pages 1223–1237. Springer.

1057


