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Abstract

This paper describes 300-sparsans’ participa-
tion in SemEval-2018 Task 9: Hypernym Dis-
covery, with a system based on sparse coding
and a formal concept hierarchy obtained from
word embeddings. Our system took first place
in subtasks (1B) Italian (all and entities), (1C)
Spanish entities, and (2B) music entities.

1 Introduction

Natural language phenomena are extremely sparse
by their nature, whereas continuous word em-
beddings employ dense representations of words.
Turning these dense representations into a much
sparser form can help in focusing on most salient
parts of word representations (Faruqui et al., 2015;
Berend, 2017; Subramanian et al., 2018).

Sparsity-based techniques often involve the
coding of a large number of signals over the same
dictionary (Rubinstein et al., 2008). Sparse, over-
complete representations have been motivated in
various domains as a way to increase separability
and interpretability (Olshausen and Field, 1997)
and stability in the presence of noise.

Non-negativity has also been argued to be ad-
vantageous for interpretability (Faruqui et al.,
2015; Fyshe et al., 2015; Arora et al., 2016). As
Subramanian et al. (2018) illustrates this in the
language domain, where sparse features are inter-
preted as lexical attributes, “to describe the city
of Pittsburgh, one might talk about phenomena
typical of the city, like erratic weather and large
bridges. It is redundant and inefficient to list neg-
ative properties, like the absence of the Statue
of Liberty”. Berend (2018) utilizes non-negative
sparse coding for word translation by training

sparse word vectors for the two languages such
that coding bases correspond to each other.

Here we apply sparse feature pairs to hypernym
extraction. The role of an attribute pair 〈i, j〉 ∈
φ(q) × φ(h) (where q is the query word, h is the
hypernym candidate, and φ(w) is the index of a
non-zero component in the sparse representations
of w) is similar to interaction terms in regression,
see section 2 for details.

Sparse representation is related to hypernymy in
various natural ways. One of them is through For-
mal concept Analysis (FCA). The idea of acquir-
ing concept hierarchies from a text corpus with
the tools of Formal concept Analysis (FCA) is
relatively new (Cimiano et al., 2005). Our sub-
missions experiment with formal concept analysis
tool by Endres et al. (2010). See the next section
for a description of formal concept lattices, and
how hypernyms can be found in them.

Another natural formulation is related to hier-
archical sparse coding (Zhao et al., 2009), where
trees describe the order in which variables “enter
the model” (i.e., take non-zero values). A node
may take a non-zero value only if its ancestors also
do: the dimensions that correspond to top level
nodes should focus on “general” meaning compo-
nents that are present in most words. Yogatama
et al. (2015) offer an implementation that is effi-
cient for gigaword corpora. Exploiting the corre-
spondence between the variable tree and the hy-
pernym hierarchy offers itself as a natural choice.

The task (Camacho-Collados et al., 2018) eval-
uated systems on their ability to extract hypernyms
for query words in five subtasks (three languages,
English, Italian, and Spanish, and two domains,
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medical and music). Queries have been catego-
rized as concepts or entities. Results were reported
for each category separately as well as in com-
bined form, thus resulting in 5 × 3 combinations.
Our system took first place in subtasks (1B) Ital-
ian (all and entities), (1C) Spanish entities, and
(2B) music entities. Detailed results for our system
appear in section 3. Our source code is available
online1.

1.1 Formal concept analysis

Formal concept Analysis (FCA) is the mathemati-
zation of concept and conceptual hierarchy (Gan-
ter and Wille, 2012; Endres et al., 2010). In FCA
terminology, a context is a set of objects O, a set
of attributes A, and a binary incidence relation
I ⊆ O × A between members of O and A. In
our application, I associates a word w ∈ O to the
indices of its non-zero sparse coding coordinates
i ∈ A. FCA finds formal concepts, pairs 〈O,A〉 of
object sets and attribute sets (O ⊆ O, A ⊆ A)
such that A consists of the shared attributes of ob-
jects in O (and no more), and O consists of the
objects in O that have all the attributes in A (and
no more). (There is a closure-operator related to
each FCA context, for which O and A are closed
sets iff 〈O,A〉 is a concept.) O is called the extent
and A is the intent of the concept.

There is an order defined in the context:
if 〈A1, B1〉 and 〈A2, B2〉 are concepts in C,
〈A1, B1〉 is a subconcept of 〈A2, B2〉 if A1 ⊆ A2
which is equivalent to B1 ⊇ B2. The concept or-
der forms a lattice. The smallest concept whose
extent contains a word is said to introduce the ob-
ject. We expect that h will be a hypernym of q iff
n(q) ≤ n(h) where n(w) denotes the node in the
concept lattice that introduces w.

The closedness of extents and intents has an im-
portant structural consequence. Adding attributes
to A (e.g. responses of additional neurons) will
very probably grow the model. However, the orig-
inal concepts will be embedded as a substructure
in the larger lattice, with their ordering relation-
ships preserved.

2 Our approach

Now we describe our system that is based on
sparse non-negative word representations and
FCA besides more traditional features.

1https://github.com/begab/fca_
hypernymy

We use the popular skip-gram (SG) approach
(Mikolov et al., 2013) to train d = 100 di-
mensional dense distributed word representations
for each sub-corpus. The word embeddings are
trained over the text corpora provided by the
shared task organizers with the default training pa-
rameters of word2vec (w2v), i.e. a window size
of 10 and 25 negative samples for each positive
context.

We derived multi-token units by relying on the
word2phrase software accompanying the w2v
toolkit. An additional source for identifying multi-
token units in the training corpora was the list of
potential hypernyms released for each subtask by
the shared task organizers.

Given the dense embedding matrix Wx ∈
Rd×|Vx|, for some subcorpus of the shared task
x ∈ {1A, 1B, 1C, 2A, 2B}, where |Vx| is the size
of the vocabulary and d is set to 100. As a subse-
quent step, we turn Wx into sparse word vectors
akin to Berend (2017) by solving for

min
D∈C,α∈R≥0

‖Dα−Wx‖F + λ‖α‖1, (1)

where C refers to the convex set of Rd×k matrices
consisting of d-dimensional columns vectors with
norm at most 1, and α contains the sparse coeffi-
cients for the elements of the vocabulary. The only
difference compared to Berend (2017) is that here
we ensure a non-negativity constraint over the el-
ements of α.

For the elements of the vocabulary we ran
the formal concept analysis tool of Endres et al.
(2010)2. In order to keep the size of the DAG out-
putted by the FCA algorithm manageable, we only
included the query words and those hypernyms in
the analysis which occur in the training dataset for
the corpora. As we will see in the next section,
this restriction turns out to be very useful.

Next, we determine a handful of features for
a pair of expressions (q, h) consisting of a query
q and its potential hypernym h. Table 1 pro-
vides an overview of the features employed for
a pair (q, h). We denote with q and h the 100-
dimensional dense vectorial representations of q
and h. Additionally, we denote with Q and H
the sequence of tokens constituting the query and
hypernym phrases. Finally, we refer to the set of
basis vectors (in the FCA terminology, attributes)

2www.compsens.uni-tuebingen.de/pub/
pages/personals/3/concepts.py
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Core feature name

cosine qᵀh
‖q‖2‖h‖2

difference ‖q − h‖2
normRatio ‖q‖2

‖h‖2

qureyBeginsWith Q[0] = h
queryEndsWith Q[−1] = h
hasCommonWord Q ∩H 6= ∅
sameFirstWord Q[0] = H[0]
sameLastWord Q[−1] = H[−1]
logFrequencyRatio log10

count(q)
count(h)

isFrequentHypernym3 c ∈MF50(q.type)
sameConcept n(h) = n(q)
parent n(q) ≺ n(h)
child n(h) ≺ n(q)
overlappingBasis φ(q) ∩ φ(h) 6= ∅
sparseDifferenceq\h |φ(q)− φ(h)|
sparseDifferenceh\q |φ(h)− φ(q)|
attributePairij 〈i, j〉 ∈ φ(q)× φ(h)

Table 1: The features employed in our classifier.
MF50(q.type) refers to the set of top-50 most fre-
quent hypernyms for a given query type.

which are assigned non-zero weights in the recon-
struction of the vectorial representation of q and h
as φ(q) and φ(h). It is also considered as a feature
(isFrequentHypernym) whether a particular
candidate hypernym h belongs to the top-50 most
frequent hypernyms for the category of q (i.e. con-
cept or entity). Modeling the two categories sep-
arately played an important role in the success of
our systems.

Three additional features are defined for in-
corporating the concept lattice output by FCA.
With n(w) denoting the concept that introduces
w, i.e. the most specific location within the DAG
for w, our features indicate whether n(q) (1) coin-
cides with that of h, (2) is the parent (immediate
successor) for that of h, or (3) is the child (imme-
diate predictions) for that of h. Parents, and even
the inverse relation, proved to be more predictive
than the conceptually motivated q ≤ h. In Ta-
ble 1, n1 ≺ n2 denotes that n1 is an immediate
predecessor of n2. We will see in post-evaluation
ablation experiments, where we refer to the above
three features as the FCA features, that they were
not useful in our submissions.

3At submission time, this feature did not work properly.

The attributePairijs above, our most im-
portant features, are indicator features for every
possible interaction term between the sparse co-
efficients in α. That means that for a pair of words
(q, h) we defined φ(q) × φ(h), i.e. candidates get
assigned with the Cartesian product derived from
the indices of the non-zero coefficients in α. Note
that this feature template induces k2 features, with
k being the number of basis vectors introduced in
the dictionary matrix D according to Eq. 1.

In order to rank potential hypernym candidates
over the test set we trained a logistic regression
classifier for concepts and entities utilizing the
sklearn package (Pedregosa et al., 2011)4 with
the regularization parameter defaulting to 1.0.

For each appropriate (q, h) pair of words for
which h is a hypernym of q, we generated a num-
ber of negative samples (q, h′), such that the train-
ing data does not include h′ as a valid hypernym
for q. For a given query q, belonging to either of
the concept or entity category, we sampled h′ from
those hypernyms which were included as a valid
hypernym in the training data with respect to some
q′ 6= q query phrase.

When making predictions for the hypernyms of
a query, we relied on our query type sensitive lo-
gistic regression model to determine the ranking of
the hypernym candidates. In our official submis-
sion we treated such phrases to rank which were
included in the training data for being a proper hy-
pernym at least once.

After the appropriate model ranked the hyper-
nym candidates, we selected the top 15 ranked
candidates and applied a post-ranking heuristic
over them, i.e. reordered them according to their
background frequency from the training corpus.
Our assumption here is that more frequent words
tend to refer to more general concepts and more
general hypernymy relations potentially tend to be
more easily detectable than more specialized ones.

3 Results

3.1 Our submissions
Our submissions were based on k = 200 dimen-
sional sparse vectors computed from unit-normed
100-dimensional dense vectors with λ = .3. The
sum of the two dimensions motivates our group
name. For training the regression model with neg-
ative samples, 50 false hypernyms were sampled
for each query q in the training dataset. One of our

4scikit-learn.org
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without attribute pairs with attribute pairs

MAP MRR P@1 P@3 P@5 P@15 MAP MRR P@1 P@3 P@5 P@15

1A offic 8.6 18.0 13.0 8.9 8.2 7.9 8.9 19.4 14.9 9.3 8.6 8.1
1A reprd 9.07 18.7 13.5 9.4 8.8 8.5 9.2 19.9 14.9 9.5 8.7 8.4
1B offic 9.4 19.9 13.2 9.5 9.3 8.8 12.1 25.1 17.6 12.9 11.7 11.2
1B reprd 9.2 19.5 12.8 8.9 8.9 8.7 12.8 26.7 18.9 13.6 12.4 11.9
1C offic 12.5 25.9 16.6 13.6 12.6 11.5 17.9 37.6 27.8 19.7 17.1 16.3
1C reprd 12.9 26.0 16.2 13.9 13.0 11.9 18.3 38.4 28.5 20.2 17.4 16.6
2A offic 15.0 32.2 24.8 17.7 15.8 11.6 20.8 40.6 31.6 23.5 21.4 17.1
2A reprd 15.1 32.4 24.4 18.0 16.2 11.8 21.5 43.7 35.6 25.3 21.8 17.0
2B offic 19.1 36.7 27.2 23.0 20.1 15.4 29.5 46.4 33.0 31.9 28.9 27.7
2B reprd 21.5 40.9 29.6 25.6 22.1 18.0 30.4 46.8 33.8 31.8 29.5 28.9

Table 2: Our submissions results: official and those that can be reproduced with the code in the
project repo (with the isFrequentHypernym feature being turned off).

MAP MRR P@1 P@3 P@5 P@10

1A 9.8 22.6 19.8 10.0 9.0 8.6
1A 8.8 21.4 19.8 8.9 7.8 7.5

1B 8.9 21.2 17.1 9.1 8.3 7.9
1B 7.8 19.4 17.1 8.3 6.8 6.5

1C 16.4 33.3 24.6 17.5 16.1 14.9
1C 12.2 29.8 24.6 12.0 11.3 11.0

2A 29.0 35.9 32.6 34.3 34.2 21.7
2A 28.9 35.8 32.6 34.3 34.2 21.4

2B 40.2 58.8 50.6 44.6 40.3 35.5
2B 33.3 51.5 36.2 40.1 35.8 28.4

Table 3: Baseline results, most frequent training
hypernyms. We (upper) consider the most fre-
quent hypernym in the given query type (concept
or entity). For comparison, we also show the MFH
baseline provided by the organizers (lower) that is
based on the most frequent hypernyms in general.

submissions involved attribute pairs, the other not.
Both submissions used the conceptually motivated
but practically harmful FCA-based features.

Table 2 shows submission results. The figures
that can be reproduced with the code in the project
repo (reprd) is slightly different from our official
submissions (offic) for two reasons: because
the implementation of isFreqHyp contained a
bug, and because of the natural randomness in
negative sampling. For reproducibility, we report
result without the isFreqHyp feature. The ran-
domness introduced by negative sampling is now
factored out by random seeding.

Train Test

1A 975(4) 0.41% 1055(4) 0.38%
1B 709(1) 0.14% 767(2) 0.26%
1C 776(2) 0.26% 625(2) 0.32%
2A 442(58) 11.60% 433(67) 13.40%
2B 366(21) 5.43% 341(17) 4.75%

(a) concept

Train Test

1A 379(142) 27.26% 344(99) 22.35%
1B 249(41) 14.14% 205(26) 11.26%
1C 184(38) 17.12% 328(45) 12.06%
2A 0(0) — 0(0) —
2B 79(34) 30.09% 102(40) 28.17%

(b) entity

Table 4: Number of in-vocabulary (and out-of-
vocabulary, OOV) queries per query type. The ra-
tio of the latter is also shown.

3.2 Query type sensitive baselining

Our submission with attribute pairs achieved first
place in categories (1B) Italian (all and entities),
(1C) Spanish entities, and (2B) music entities.
This is in part due to our good choice of a fallback
solution in the case of OOV queries: we applied a
category-sensitive baseline returning the most fre-
quent train hypernym in the corresponding query
type (concept or entity). Table 4 shows how fre-
quently we had to rely on this fallback, and Table 3
shows the corresponding pure baseline results.
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candidate filtering off candidate filtering on

k ns MAP MRR P@1 P@3 P@5 P@15 MAP MRR P@1 P@3 P@5 P@15

200 50 6.5 14.9 13.1 7.4 6.1 5.5 12.1 25.4 18.9 12.9 11.6 10.9
200 all 6.9 15.8 14.1 7.6 6.3 5.8 13.0 27.1 19.9 14.2 12.5 11.8

300 50 6.9 15.8 13.9 7.6 6.4 5.9 12.1 25.7 19.5 13.0 11.5 11.0
300 all 8.0 17.8 15.4 8.9 7.4 6.8 13.5 28.0 21.1 14.5 12.9 12.3

1000 50 9.0 20.0 17.2 9.8 8.3 7.7 13.3 28.1 21.3 13.8 12.6 12.3
1000 all 11.6 26.1 22.5 12.5 10.8 10.0 13.6 27.2 19.4 13.9 13.2 12.8

Table 5: Post evaluation results on the 1A dataset investigating the effect of various hyperparameter
choices. k and ns denotes the number of basis vectors and negative samples generated during training
per each positive (q, h) pair. Best results obtained for each metric are marked as bold.

MAP MRR P@1 P@3 P@5 P@15

off off 10.3 21.3 15.0 10.6 10.1 9.6
off on 10.1 21.1 14.9 10.5 9.9 9.5
on off 12.1 25.4 18.9 12.9 11.6 10.9
on on 12.1 25.3 18.7 13.0 11.6 11.0

Table 6: Ablation experiments, on the 1A dataset
with k = 200, ns = 50 (and the implementa-
tion of isFreqHyp fixed). The first two columns
indicate whether attributePairij and FCA-derived
features are utilized, respectively.

3.3 Post-evaluation analysis
After the evaluation closed, we conducted ablation
experiments the results of which are included in
Table 6. In these experiments, we investigated the
contribution of the features derived from sparse
attribute pairs and FCA. These ablation experi-
ments corroborate the importance of features de-
rived from sparse attribute pairs and reveal that
turning off FCA-based features does not hurt per-
formance at all. For this reason – even though
our official shared task submission included FCA-
related features – we no longer employed them in
our post-evaluation experiments.

Table 5 includes the detailed behavior of our
model on subtask 1A with respect three distinct
factors, that is

1. the number of basis vectors employed during
sparse coding (k ∈ {200, 300, 1000}),

2. the number of negative training samples per
positive sample (ns ∈ {50, all}),

3. candidate filtering being turned on/off.

In our original submission we generated 50 neg-
ative samples (ns) generated per query q during

MAP MRR P@1 P@3 P@5 P@15

1A 76.1 92.2 92.2 82.3 76.4 71.6
1B 71.2 93.4 93.4 78.5 70.9 65.7
1C 81.0 95.9 95.9 87.2 81.7 76.4
2A 72.6 89.6 89.6 81.0 75.3 64.1
2B 95.4 98.8 98.8 97.3 96.0 93.7

Table 7: Test results of an oracle system which uses
candidate filtering.

training. In our post evaluation experiments we in-
vestigated the effects of generating more negative
samples, i.e. we regarded all the valid hypernyms
over the training set – not being a proper hyper-
nym for q – as h′ upon the creation of the (q, h′)
negative training instances. This latter strategy is
referenced as ns = all in Table 5.

In our official submission we regarded only
those hypernyms as potential candidates to rank
during test time which occurred at least once as
a correct hypernym in the training data. We call
this strategy as candidate filtering. Historically,
we applied this restriction to speed up the FCA
algorithm because this way the size of the concept
lattice could be made smaller. As there are valid
hypernyms on the test set which never occurred in
the training data, our official submission would not
be able to obtain a perfect score even in theory. Ta-
ble 7 contains the best possible metrics on the test
set that we could achieve when candidate filtering
is applied. In our post evaluation experiments we
also investigated the effects of turning this kind of
filtering step off. As Table 5 illustrates, however,
our scores degrade after turning candidate filtering
off.

Our post evaluation experiments in Table 5 sug-
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MAP MRR P@1 P@3 P@10 P@15

1A 13.3 28.1 21.3 13.8 12.6 12.3
1A 19.8 36.1 29.7 21.1 19.0 18.3

1B 12.5 24.2 14.5 13.4 12.5 12.0
1B 12.1 25.1 17.6 12.9 11.7 11.2

1C 21.8 43.8 33.7 22.9 21.4 19.9
1C 20.0 28.3 21.4 20.9 21.0 19.4

2A 21.9 39.5 34.2 25.5 22.6 18.5
2A 34.0 54.6 49.2 40.1 36.8 27.1

2B 31.5 43.6 29.8 30.3 30.3 31.5
2B 41.0 60.9 48.2 44.9 41.3 38.0

Table 8: Post evaluation results for the different
subtasks using k = 1000, ns = 50 and hypernym
candidate filtering. Upper: our system, lower:
subtask winner.

gest that it is advantageous to apply sparse repre-
sentation of more expressive power (i.e. a higher
number of basis vectors). Generating more nega-
tive samples also provides some additional perfor-
mance boost. These previous observations hold ir-
respective whether candidate filtering is employed
or not, however, their effects are more pronounced
when hypernym candidates are not filtered.

Finally, we report our post-evaluation results for
all the subtasks and compare them to the official
scores of the best performing systems in Table 8.
It can be seen from these enhanced results for cat-
egory “all” (concepts and entities mixed) that we
would win (1B) Italian and (1C) Spanish. Our
post-evaluation system – which only differs from
our participating system that it fixes the calcula-
tion of a features, does not rely on FCA-based fea-
tures and uses k = 1000 – would also place third
in the rest of the subtasks.

4 Conclusion

In this paper we experimented with the integration
of sparse word representations into the task of hy-
pernymy discovery. We strived to utilize sparse
word representations in two ways, i.e. via build-
ing concept lattices using formal concept analy-
sis and modeling the hypernymy relation with the
help of interaction terms. While our former ap-
proach for deriving formal concepts from sparse
word representations was not successful, the inter-
action terms derived from sparse word representa-
tions proved to be highly beneficial.
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