
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 874–877
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

HCCL at SemEval-2018 Task 8: An End-to-End System for Sequence
Labeling from Cybersecurity Reports

Mingming Fu 1,2, Xuemin Zhao 1 , Yonghong Yan 1,2,3

1The Key Laboratory of Speech Acoustics and Content Understanding
Institute of Acoustics, Chinese Academy of Sciences

2University of Chinese Academy of Sciences
3Xinjiang Laboratory of Minority Speech and Language Information Processing

Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences
{fumingming,zhaoxuemin,yanyonghong}@hccl.ioa.ac.cn

Abstract

This paper describes HCCL team systems that
participated in SemEval 2018 Task 8: Se-
cureNLP (Semantic Extraction from cyberse-
curity reports using NLP). To solve the prob-
lem, our team applied a neural network ar-
chitecture that benefits from both word and
character level representaions automatically,
by using combination of Bi-directional LSTM,
CNN and CRF (Ma and Hovy, 2016). Our
system is truly end-to-end, requiring no fea-
ture engineering or data preprocessing, and we
ranked 4th in the subtask 1, 7th in the subtask
2 and 3rd in the SubTask2-relaxed.

1 Introduction

Recently, cybersecurity defense has also been rec-
ognized as one of the problem areas likely to be
important both for advancing AI and for its long-
run impact on society. In particular, natural lan-
guage processing (NLP) has the potential for sub-
stantial contribution in cybersecurity and that this
is a critical research area given the urgency and
risks involved (Lim et al., 2017).

In SemEval 2018 Task 8 (Phandi et al., 2018),
there are four subtask:

1. SubTask1: Classify if a sentence is useful for
inferring malware actions and capabilities

2. SubTask2: predict the token labels in the sen-
tences. The output needs to be in BIO format.
There are 3 types of token labels: ”Action”,
”Entity”, and ”Modifier”.

3. SubTask3: predict the relations between the
token labels

4. SubTask4: predict the attributes for each en-
tity token

In this evaluation, our team submitted the re-
sults of Subtask 1 and Subtask 2. To tackle this

problem, we treat subtask 2 as a sequence labeling
problem. Most traditional high performance se-
quence labeling models are linear statistical mod-
els, including Hidden Markov Models (HMM) and
Conditional Random Fields (CRF) (Luo et al.,
2015), which rely heavily on hand-crafted features
and taskspecific resources.

Recently, many neural network based meth-
ods have been successfully applied to sequence
labeling task: Named Entity Recognition (Lam-
ple et al., 2016). In this paper, we present an
end-to-end System (combined CNN, LSTM and
CRF) for sequence labeling that uses no compli-
cated handcrafted features or domain knowledge.
LSTM is capable of learning long-term depen-
dencies, which is beneficial to sequence modeling
tasks. And character level CNN can get character-
level representation. For sequence labeling (or
general structured prediction) tasks, it is benefi-
cial to consider the correlations between labels in
neighborhoods and jointly decode the best chain
of labels for a given input sentence. So we model
label sequence jointly using a conditional random
field (CRF), instead of decoding each label inde-
pendently. Therefore, the system we proposed is
based on CNN, Bi-directional LSTM and CRF.
And in the SubTask2-relaxed our group ranked
third. As for SubTask1, we proposed a ruled based
method that if any token in the sentence is labled
”Action”, ”Entity”, or ”Modifier”, the sentence
would be considered relevant. Our team ranked
4th in the subtask 1.

2 System Description

In this section, we describe the components (lay-
ers) of our end-to-end system. We design our
model with CNN-BiLSTM-CRF that combined
word level representation, character level repre-
sentation and POS representation as feature in-

874



put, and outperform than the baseline in subtask2-
relaxed.

2.1 Feature Embedding

Feature representation as the meta input of neu-
ral network have received a great deal of attention,
and there are many outstanding achievements. In
our system, the word level embedding is trained
by the Google’s Word2Vec (Mikolov et al., 2013)
tool. Previous studies (Santos and Guimaraes,
2015; Chiu and Nichols, 2015)have shown that
CNN is an effective approach to extract morpho-
logical information (like the prefix or suffix of
a word) from characters of words and encode it
into neural representations. To get more diverse
information, our team decided to use Part-Of-
Speech(POS) as extra feature input.

Word level Embeddings: Taking into account
the particularity of the cybersecurity, we use the
evaluation data to train our own word embeddings.
Word level embeddings are trained by Word2Vec1,
and we set embedding dim = 300.

Character level Embeddings: Character level
embeddings are random initialization(trainable),
and we set embedding dim = 30.

POS Embeddings: POS embeddings are ran-
dom initialization(trainable), and we set embed-
ding dim = 30.

2.2 Model

We provide a brief description of CNN, LSTM and
CRF, and present a hybrid sequence labeling ar-
chitecture. This architecture is similar to the ones
presented by (Ma and Hovy, 2016).

Figure 1: The CNN network for extracting character-
level embedding of words.

1https://code.google.com/archive/p/word2vec/

2.2.1 CNN
Figure 1 shows the CNN we use to extract

character-level representation of a given word.
The CNN is similar to the (Chiu and Nichols,
2015), except that we use only character embed-
dings as the inputs to CNN, without character type
features. A dropout layer (Srivastava et al., 2014)
is applied before character embeddings are input
to CNN.

2.2.2 LSTM
Recurrent neural networks (RNNs) are a family

of neural networks that operate on sequential data.
Although RNN can, in theory, learn long depen-
dencies, in practice they fail to do so and tend to
be biased towards their most recent inputs in the
sequence (Bengio et al., 1994). Long Short-term
Memory Network (LSTM) have been designed to
combat this issue by incorporating a memory-cell
and have been shown to capture long-range depen-
dencies. They do so using several gates that con-
trol the proportion of the input to give to the mem-
ory cell, and the proportion from the previous state
to forget (Hochreiter and Schmidhuber, 1997). We
use the following implementation:

We will refer to the former as the forward
LSTM and the latter as the backward LSTM. This
forward and backward LSTM pair is referred to
as a bidirectional LSTM (Graves and Schmidhu-
ber, 2005; Dyer et al., 2015).The basic idea is to
present each sequence forwards and backwards to
two separate hidden states to capture past and fu-
ture information, respectively.

2.2.3 CRF
For sequence labeling (or general structured

prediction) tasks, it is beneficial to consider the
correlations between labels in neighborhoods and
jointly decode the best chain of labels for a given
input sentence. Therefore, we model label se-
quence jointly using a conditional random field
(CRF) (Lafferty et al., 2001), instead of decoding
each label independently.

For a sequence CRF model (only interactions
between two successive labels are considered),
training and decoding can be solved efficiently by
adopting the Viterbi algorithm.

2.2.4 CNN-BiLSTM-CRF
Finally, we construct our neural network model

by feeding the output vectors of BiLSTM into a

875



CRF layer. Figure 2 illustrates the architecture
of our network in detail. For each word, the
character-level is computed by the CNN in Fig-
ure 1 with character embeddings as inputs, and
we use NLTK2 to get POS information. Then the
character-level representation vector the POS rep-
resentation vector are concatenated with the word
embedding vector to feed into the BiLSTM net-
work. Finally, the output vectors of BiLSTM are
fed to the CRF layer to jointly decode the best la-
bel sequence. As shown in Figure 2, dropout lay-
ers are applied on both the input and output vectors
of BiLSTM. Experimental results show that using
dropout significantly improve the performance of
our model.

Figure 2: Main architecture of the network. Concate-
nated feature embeddings are given to BiLSTM.

3 Experiments and Results

3.1 Training
For model presented, we train our networks using
the back-propagation algorithm updating our pa-
rameters on every training batch, using Adam with
a learning rate of 0.001 and a gradient clipping of
5.0. Our CNN-BiLSTM-CRF model uses a sin-
gle layer for the forward and backward LSTMs
whose dimensions are set to 300. Tuning this di-
mension did not significantly impact model per-
formance. We set the dropout rate to 0.5. Using

2http://www.nltk.org/

higher rates negatively impacted our results, while
smaller rates led to longer training time. The mod-
els were implemented in TensorFlow3 and experi-
ments were run on K80 GPU.

3.2 Result

In this work, our team submitted the subtask 1 and
subtask 2 results. The results of all the teams are
shown in Table 2.

For subtask1, its goal is to classify if a sentence
is relevant for inferring malware actions and capa-
bilities. We make use of the result in subtask2 for
this subtask and consider a sentence to be relevant
as long as it has an annotated token label. Table
2 shows that our system is ranked 4th and behave
better than baseline for subtask1.

For subtask2, our CNN-BiLSTM-CRF model is
then trained to predict token labels from cyberse-
curity reports. From Table 2 we can see that in
subtask2, our system is slightly worse than the
baseline. However, our system has a 22.5% im-
provement in subtask2-relaxed than baseline.

3.3 Error Analysis

For subTask1, a lot of non-malware sentences are
regarded as malware sentences. May be due to
the fact that we use the subTask2 output to esti-
mate whether the current sentence is non-malware
sentence or malware sentence, so the errors of
subTask2 will affect subTask1. And both non-
malware sentences and malware sentences contain
annotated tokens.

For subTask2, we find that many unannotated
tokens are labeled as annotated tokens and anno-
tated tokens are not labeled. By analyzing the
data, we found that the same words occurring as
both unannotated and annotated tokens in the sen-
tences, which might make our system achieve a
low F-score.

4 Conclusion

In this paper we presented the system we used to
compete in the SemEval-2018 Semantic Extrac-
tion from cybersecurity reports using NLP com-
petition. Our goal is to implement a deep learn-
ing based end-to-end system that can solve cross
domain sequence labeling issues without compli-
cated feature engineering.

For future work, it would be interesting to ex-
plore systems that can solve the problem of self-

3https://www.tensorflow.org/

876



Team SubTask1 SubTask2 SubTask2-relaxed
Team 1 0.57 0.23 0.31
Team 2 0.57 0.28 0.36
Team 3 0.52 0.29 0.39
Our Team 0.52 (4) 0.22 (7) 0.38 (3)
Team 5 0.52 0.16 0.25
Team 6 0.50 0.25 0.36
Team 7 0.49 0.28 0.39
Team 8 0.18 0.22 0.32
Team 9 0.15 0.21 0.28
Baseline 0.51 0.23 0.31

Table 1: Results on subtask1 and subtask2.

adaptation between different domains. And trans-
fer learning might be a way to handle the lack of
labeled data.

5 Acknowledgments

This work is partially supported by the Na-
tional Natural Science Foundation of China
(Nos. 11590770-4, 61650202, U1536117,
61671442, 11674352, 11504406, 61601453), the
National Key Research and Development Program
(Nos. 2016YFB0801203, 2016YFC0800503)
and the Key Science and Technology Project of
the Xinjiang Uygur Autonomous Region (No.
2016A03007-1).

References
Yoshua Bengio, Patrice Y Simard, and Paolo Frasconi.

1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE Transactions on Neu-
ral Networks, 5(2):157–166.

Jason P C Chiu and Eric Nichols. 2015. Named entity
recognition with bidirectional lstm-cnns. Transac-
tions of the Association for Computational Linguis-
tics, 4(0):357–370.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. meeting of the association for com-
putational linguistics, pages 334–343.

Alex Graves and Jurgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
networks. 4:2047–2052.

Sepp Hochreiter and Jurgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

John D Lafferty, Andrew Mccallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-

abilistic models for segmenting and labeling se-
quence data. pages 282–289.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
pages 260–270.

Swee Kiat Lim, Aldrian Obaja Muis, Wei Lu, and
Chen Hui Ong. 2017. Malwaretextdb: A database
for annotated malware articles. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
volume 1, pages 1557–1567.

Gang Luo, Xiaojiang Huang, Chin Yew Lin, and Za-
iqing Nie. 2015. Joint entity recognition and disam-
biguation. In Conference on Empirical Methods in
Natural Language Processing, pages 879–888.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1064–1074, Berlin, Germany.
Association for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. arXiv: Computation and
Language.

Peter Phandi, Amila Silva, and Wei Lu. 2018.
Semeval-2018 Task 8: Semantic Extraction from
CybersecUrity REports using Natural Language
Processing (SecureNLP). In Proceedings of
International Workshop on Semantic Evaluation
(SemEval-2018), New Orleans, LA, USA.

Cicero Nogueira Dos Santos and Victor Guimaraes.
2015. Boosting named entity recognition with neu-
ral character embeddings. arXiv: Computation and
Language, pages 25–33.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(1):1929–1958.

877


