
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 868–873
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

TeamDL at SemEval-2018 Task 8: Cybersecurity Text Analysis using
Convolutional Neural Network and Conditional Random Fields

Manikandan R 1∗, Krishna Madgula2, Snehanshu Saha1,2

1CAMMS, Dept of CSE ,PESIT-Bangalore South Campus
2PESIT-Bangalore South Campus

manikandan.ravikiran@gmail.com
krishnac.madgula@gmail.com
snehangshusaha@gmail.com

Abstract

In this paper we present our participation to
SemEval-2018 Task 8 subtasks 1 & 2 respec-
tively. We developed Convolution Neural Net-
work system for malware sentence classifi-
cation (subtask 1) and Conditional Random
Fields system for malware token label pre-
diction (subtask 2). We experimented with
couple of word embedding strategies, fea-
ture sets and achieved competitive perfor-
mance across the two subtasks. Code is made
available at https://bitbucket.org/
vishnumani2009/securenlp

1 Introduction

Cybersecurity risks and malware threats are be-
coming common and increasingly dangerous re-
quiring analysis of large repositories of malware
related information in realtime to understand its
capabilities and mount an effective defense. The
sheer volume of data and its potential applica-
tions alone have increased traction in recent times
among NLP researchers. In this line, SemEval
2018 Task-8 offers 4 subtasks addressing text clas-
sification and token, relation and attribute label
prediction in cybersecurity domain using Mal-
wareTextDB (Lim et al., 2017). While subtask 1
focuses on predicting sentences relevance to mal-
ware , subtasks 2, 3 and 4 focus on predicting to-
ken, relation and attribute labels for malware text
from subtask 1. More details about the each of the
subtasks can be found in Phandi et al. (2018).

Concerning subtask 1, which was inherently
formulated as a text classification problem very
few works are done till date in cybersecurity do-
main (Lim et al., 2017; Zhang et al., 2016). How-
ever, in general domain the problem of text clas-
sification is well addressed with extensive usage

∗Work performed during weekend part time assistantship
at CAMMS

of deep learning approaches (Zhou et al., 2016;
Liang and Zhang, 2016; Kim, 2014; Kalchbrenner
et al., 2014; Zhang et al., 2015), Support vector
machines, logistic regression (Genkin et al., 2007;
Jiang et al., 2016) and Tree based approaches
(Bouaziz et al., 2014). On the other hand, sub-
task 2 was formulated as sequence tagging prob-
lem which is addressed till date by CRF (Finkel
et al., 2005; R. et al., 2016, 2017), deep learn-
ing approaches (Chiu and Nichols, 2016; Ma and
Hovy, 2016; Lample et al., 2016) and SVM (Ekbal
and Bandyopadhyay, 2012).

In this paper, we describe our system that ad-
dresses subtasks 1 and 2 involving malware sen-
tence classification and malware token label pre-
diction. We designed these systems by adapting
various insights from previous works on text clas-
sification and sequence tagging. We submitted a
Convolutional Neural Network(CNN) based sys-
tem based system for subtask 1 and Conditional
Random Field (CRF) based system for subtask 2.

The rest of the paper is organized as follows. In
section section 2, we discuss datasets and prepro-
cessing. In section 3, we describe the algorithms
and features used in the process of model devel-
opment. In section 4, we describe our results and
some of our findings. Finally in section 5, we con-
clude with summary and possible implications on
future work.

2 Dataset and Preprocessing

The MalwareTextDB corpus used for this work
consists of APT reports describing malware re-
ported information taken from APTnotes1. We de-
signed an end-to-end pipeline consisting on three
module which process input text across multiple
stages. In stage 1, the input sentence is fed to
a preprocessing module which pre-processes the

1https://github.com/aptnotes/

868



Ţoken P̧laceholder
C:/ProgramData/Mail/ __PATH__
www.ducklink.com/ __URL__
securityblog@gdata.de __EMAILID__
profapi.dll __EXE__
"epsilon" __SPECIAL__

Table 1: Tokens and placeholders used in stage 1

text for stage 2 where the sentence are subject to
classification and finally stage 3 sequence tags the
tokens of the input sentence. We used following
preprocessing steps in stage 1.

1. All the words are lower-cased.

2. All the words that can be grouped under com-
mon category were replaced by a category
placeholder as shown in table 1.

We used following opensource tools 1) Stanford
Core-NLP (Manning et al., 2014) 2) Keras (Chol-
let et al., 2015) 3) CNTK (Seide and Agarwal,
2016) 4) Gensim (Řehůřek and Sojka, 2010) 5)
NLTK for preprocessing (Loper and Bird, 2002)
6) Scikit-learn (Pedregosa et al., 2011) for grid
search 7) Glove (Pennington et al., 2014).

3 Model

In this section, we explain the algorithms and
hyperparameters used for system development.
More specifically, in section 3.1 we explain our
CNN architecture for subtask 1 and in section 3.2
we show our CRF architecture for subtask 2.

3.1 Algorithm - Subtask 1

For subtask 1, we focused more towards deep
learning. Previous works (Yin et al., 2017) sug-
gests that both Convolutional Neural Network
(CNN) and Recurrent Neural Network (RNN) ar-
chitectures has been successfully applied for vari-
ous instances of text classification analysis at var-
ious level. With most of recent works (Zhang and
Wallace, 2017) showing success of CNN, we de-
veloped a CNN architecture based on work of Kim
(2014). The architecture developed in this work is
as shown in figure 1.

3.1.1 Convolutional Neural Network
Our CNN architecture was derived from original
works of Kim (2014) by using grid search over in-
put channel size, number of convolution layers and
number of filters. We use a multichannel model ar-
chitecture with five input channels for processing

Figure 1: CNN Architecture

2-6 grams of input malware text. Each channel is
comprised of the following elements:

1. Input layer that defines the length of input se-
quences.

2. Embedding layer set to the size of the vocab-
ulary and 100-dimensional real-valued repre-
sentations.

3. One-dimensional convolutional layer with
128 filters and a kernel size set to the num-
ber of words to read at once.

4. Channel wise Pooling layer with pool size of
5 to consolidate the output from the convolu-
tional layer.

Following CNN, we use a Fully Connected
Neural Network (FCNN) to transfer the the con-
catenated feature map (600 dimension) to a prob-
ability distribution over the two class labels. The
number of layers in FCNN is set to be 2. The first
layer uses 128 units with a tanh activation func-
tion. The second layer produces the classifica-
tion probability distribution over 2 units combined
with a softmax activation function.

Further to handle overfitting we use regular-
ization via dropout (Srivastava et al., 2014) with

869



F̧eature V̧alue
Sentence pad length 1000
Dimensions of wordvectors 100
Number of CNN layers 8
Dimension of CNN layers 1
Number of CNN filters 128
Activation function relu
Initialization function Xavier
Number of FC layers 2
Dimension of 1st FC layers 128
Dimension of 2nd FC layers 2
Activation of Final layer Softmax
Optimizer Adam
Batch size 32
Max Epoch 10
Loss function Cross Entropy

Table 2: Hyper parameters of CNN

threshold of 0.25. Additionally, we also apply cost
sensitive learning (Zhou and Liu, 2006) in order
to balance the effect of the larger negative samples
present in the training dataset. For each class, we
assigned weight proportional to class frequency.
We implemented the neural network model using
Keras. We trained our networks using Adam opti-
mizer (Kingma and Ba, 2014). All the hyper pa-
rameters are listed in table 2.

3.1.2 Input Embeddings
We experimented with two category of word
embeddings namely native embeddings and task
specific embedding using Word2vec (Le and
Mikolov, 2014) and Glove (Pennington et al.,
2014) algorithms. Characteristics of each of the
embedding is as explained below.

1. Native Embeddings: All words includ-
ing the unknown ones that are randomly
initialized use embeddings from original
Word2vec/Glove models.

2. Task specific : The embeddings are gener-
ated by training Word2vec/Glove algorithms
on sentences from MalwareTextDB.

3.2 Algorithm - Subtask 2
For subtask 2, we developed a Conditional Ran-
dom Field (CRF) system (Finkel et al., 2005)
based on previous works of Lim et al.(2017).

3.2.1 Conditional Random Fields
We used Conditional Random Fields with follow-
ing features that is available as part of Stanford
CoreNLP ToolKit.

Common Features: N-grams of size 6, previ-
ous, next tokens and labels, features giving dis-
junctions of words anywhere in the left or right,

Word2vec Glove
P R F P R F

test17 0.47 0.77 0.58 0.48 0.78 0.47
dev18 0.18 0.32 0.23 0.35 0.80 0.18
test18 0.24 0.34 0.28 0.38 0.72 0.50

Table 3: Results of subtask 1 on native Embeddings

Word2vec-Task Glove-Task
P R F P R F

test17 0.28 0.50 0.36 0.43 0.71 0.54
dev18 0.18 0.30 0.22 0.33 0.72 0.45
test18 0.20 0.30 0.24 0.38 0.67 0.48

Table 4: Results of subtask 1 on task specific embed-
dings

word shape features, word lemma of current, pre-
vious and next words, word-tag pair features, POS
tags, prefix and suffixes. The description of the
features are given in CoreNLP(2014).

Additional features: Based on analysis of cor-
pus, to tackle unknown malware entities we used
a gazette with token that describes malware entity.
These tokens were taken from training corpus and
internet2.

4 Experiments and Results

In this section, we present results for each of the
developed systems. The original dataset was split
into train17, test-173 released at the start of com-
petition and dev-18, test-18 released during the
competition pre-evaluation period for tuning of
parameters and final evaluation respectively . We
submitted CNN system for subtask 1 and CRF sys-
tem for subtask 2. Tables 3-5 show the results of
subtasks 1 and 2 respectively across the datasets.
Our systems achieve F-score of 0.5 for subtask 1
and 0.25, 0.36 for subtask 2 over strict, relaxed
runs of subtask 2.

4.1 Discussion

In previous sections we described the system de-
veloped for malware text analysis using which we
achieved competitive performance for subtask 1
and subtask 2.

For subtask 1, we developed a CNN system and
experimented the same with different embedding
strategies as explained in section 3.1.2. Across all

2https://www.mcafee.com/threat-intelligence/malware/
3(train/dev/test)-(17/18) is not an official naming conven-

tion , instead used here for ease of understanding

870



CRF-Strict CRF-Relaxed
P R F P R F

test17 0.51 0.26 0.34 0.45 0.36 0.40
dev18 0.18 0.25 0.21 0.38 0.22 0.29
test18 0.29 0.23 0.25 0.42 0.30 0.36

Table 5: Results of subtask 2 on Conditional Random
fields

the subset of datasets, glove embeddings consis-
tently outperformed Word2Vec embeddings. This
is in line with works of Kim (2014). We ini-
tially hypothesized that since ”the context of the
malware texts are different from normal English
texts”, task-specific embeddings would improve
the results of subtask 1. However, we observe
that task specific embeddings produced lower re-
sults compared to native embeddings. Observa-
tions of results revealed high false negative pre-
dictions of non-malware texts, we believe that this
may attributed to limited dataset used for develop-
ing embeddings, unlike native embeddings which
was created using very large corpus. This results
also agrees the general observation, that the size
of the training corpus has often a greater impact
on results than its strict matching with the target
domain(Tourille et al., 2017).

For subtask 1, we achieved an accuracy of
0.50 and were 7% behind the top performing sys-
tems. We identified three different sources of er-
rors across the sentences in line with previous
works(Lim et al., 2017) namely misclassification
of i) Sentences consisting of malware related key-
words without implication on actions; ii) Sen-
tences describing attacker actions and addition-
ally we also found iii) misclassification of sen-
tences containing specific patterns like presence of

PATH and EXE . Further, we had initially
hoped that the multichannel architecture would
prevent overfitting(Kim, 2014) and thus work bet-
ter than the single channel model, especially on
small datasets like MalwareTextDB. The results,
however, are vice versa and hence further work on
regularizing the training process and simpler sin-
gle channel architecture is warranted.

For subtask 2, during analysis we found that
there were multiple malware names which were
previously unseen and felt only orthographic fea-
tures would be insufficient. Hence in addition to
commonly used features, we also included gazette
features with words that quantify malware entity.
However, during evaluation on development set

we found high drop in precision when we used
gazette features owing to its deterministic nature.
Hence, we submitted CRF only with common fea-
tures described in section 3.2.1 for final evalua-
tion. With this system we achieved a result of
0.25 and 0.36 in strict and relaxed evaluation re-
spectively. Our accuracy is 3.5% (avg) behind the
top performing system across the evaluations. We
identified following sources of errors i) Tagging of
tokens in sentences containing only actions but not
entities - these are sentences with only attackers
actions in line with error from subtask 1 ii) Lack
of sensitivity to context - some tokens in test doc-
ument are given same label from train irrespective
of context iii) Miss tagging of some of the tokens
with common suffixes. For subtask 2, we exper-
imented with simple CRF architecture with basic
features, hence we believe further exploration of
future engineering is needed to reduce context re-
lated errors. As far as addressing rest of the errors,
we plan to explore combination of rule based and
deep learning approaches.

5 Conclusion

In this work, we developed CNN and CRF sys-
tems for malware text classification and token la-
bel prediction, achieving competitive results. For
subtask 1, we experimented with couple of word
embedding strategies and found native glove em-
bedding to be useful. For subtask 2, we used CRF
with simple features achieving results closer to top
performing system and above the official bench-
mark. Further, we described various sources of er-
rors identified in the due process of analysis. In
future, we plan to further improve our system to
show higher performance based on the above ob-
servations.

Acknowledgments

We thank the task organizers for providing ac-
cess to MalwareTextDB corpus and organizing the
shared task. Further, we would like to thank vari-
ous authors for open sourcing the codes of various
algorithms used in this work.

References
Ameni Bouaziz, Christel Dartigues-Pallez, Célia

da Costa Pereira, Frédéric Precioso, and Patrick
Lloret. 2014. Short text classification using seman-
tic random forest. In DaWaK.

871



Jason P. C. Chiu and Eric Nichols. 2016. Named en-
tity recognition with bidirectional lstm-cnns. TACL,
4:357–370.

François Chollet et al. 2015. Keras. https://
github.com/fchollet/keras.

Stanford CoreNLP. 2014. Nerfeaturefactory.
https://nlp.stanford.edu/nlp/
javadoc/javanlp/edu/stanford/nlp/
ie/NERFeatureFactory.html.

Asif Ekbal and Sivaji Bandyopadhyay. 2012. Named
entity recognition using support vector machine: A
language independent approach.

Jenny Rose Finkel, Trond Grenager, and Christo-
pher D. Manning. 2005. Incorporating non-local
information into information extraction systems by
gibbs sampling. In ACL.

Alexander Genkin, David D. Lewis, and David Madi-
gan. 2007. Large-scale bayesian logistic regression
for text categorization. Technometrics, 49:291–304.

Mingyang Jiang, Yanchun Liang, Xiaoyue Feng, Xiao-
jing Fan, Zhili Pei, Yu Xue, and Renchu Guan. 2016.
Text classification based on deep belief network and
softmax regression. Neural Computing and Appli-
cations, pages 1–10.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In ACL.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In HLT-NAACL.

Quoc V. Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In ICML.

Depeng Liang and Yongdong Zhang. 2016. Ac-
blstm: Asymmetric convolutional bidirectional
lstm networks for text classification. CoRR,
abs/1611.01884.

Swee Kiat Lim, Aldrian Obaja Muis, Wei Lu, and
Ong Chen Hui. 2017. Malwaretextdb: A database
for annotated malware articles. In ACL.

Edward Loper and Steven B Bird. 2002. Nltk: The
natural language toolkit. CoRR, cs.CL/0205028.

Xuezhe Ma and Eduard H. Hovy. 2016. End-to-end
sequence labeling via bi-directional lstm-cnns-crf.
CoRR, abs/1603.01354.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In ACL.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jacob VanderPlas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Edouard Duchesnay. 2011.
Scikit-learn: Machine learning in python. Journal
of Machine Learning Research, 12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In EMNLP.

Peter Phandi, Amila Silva, and Wei Lu. 2018.
Semeval-2018 Task 8: Semantic Extraction from
CybersecUrity REports using Natural Language
Processing (SecureNLP). In Proceedings of
International Workshop on Semantic Evaluation
(SemEval-2018), New Orleans, LA, USA.

Sarath P. R., Manikandan R, and Yoshiki Niwa. 2016.
Hitachi at semeval-2016 task 12: A hybrid approach
for temporal information extraction from clinical
notes. In SemEval@NAACL-HLT.

Sarath P. R., Manikandan R, and Yoshiki Niwa. 2017.
Hitachi at semeval-2017 task 12: System for tem-
poral information extraction from clinical notes. In
SemEval@ACL.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

Frank Seide and Amit Agarwal. 2016. Cntk: Mi-
crosoft’s open-source deep-learning toolkit. In
KDD.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research, 15:1929–1958.

Julien Tourille, Olivier Ferret, Xavier Tannier, and
Aurélie Névéol. 2017. Limsi-cot at semeval-2017
task 12: Neural architecture for temporal infor-
mation extraction from clinical narratives. In Se-
mEval@ACL.

Wenpeng Yin, Katharina Kann, Mo Yu, and Hin-
rich Schütze. 2017. Comparative study of cnn
and rnn for natural language processing. CoRR,
abs/1702.01923.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun.
2015. Character-level convolutional networks for
text classification. In NIPS.

872



Ye Zhang and Byron C. Wallace. 2017. A sensitiv-
ity analysis of (and practitioners’ guide to) convo-
lutional neural networks for sentence classification.
In IJCNLP.

Yunan Zhang, Qingjia Huang, Xinjian Ma, Zeming
Yang, and Jianguo Jiang. 2016. Using multi-
features and ensemble learning method for imbal-
anced malware classification. 2016 IEEE Trust-
com/BigDataSE/ISPA, pages 965–973.

Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming Xu,
Hongyun Bao, and Bo Xu. 2016. Text classification
improved by integrating bidirectional lstm with two-
dimensional max pooling. In COLING.

Zhi-Hua Zhou and Xu-Ying Liu. 2006. Training cost-
sensitive neural networks with methods addressing
the class imbalance problem. IEEE Transactions on
Knowledge and Data Engineering, 18:63–77.

873


