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Abstract

Large repositories of scientific literature
call for the development of robust meth-
ods to extract information from scholarly
papers. This problem is addressed by the
SemEval 2018 Task 7 on extracting and
classifying relations found within scien-
tific publications. In this paper, we present
a feature-based and a deep learning-based
approach to the task and discuss the results
of the system runs that we submitted for
evaluation.

1 Introduction

Nowadays, the exploding amount of scientific lit-
erature makes it ever more problematic for re-
searchers and scholars to get focused access to the
state-of-the-art in a certain field of science. There-
fore, it is getting increasingly important to de-
velop effective computational approaches for ex-
tracting information from large scholarly corpora.
SemEval 2018 Task 7 (Gábor et al., 2018) ad-
dresses this problem with a shared task on extract-
ing and classifying semantic relations in scientific
papers. The task is divided into two subtasks:

1. Relation Classification. Given an existing rela-
tion between two entities and their context, the
task is to predict the label of the relation out
of the set of possible classes, namely USAGE,
RESULT, MODEL-FEATURE, PART WHOLE,
TOPIC, COMPARISON. The task is decom-
posed into two different scenarios according to
the data used, namely with either manually an-
notated entities (1.1) or noisy data with auto-
matically extracted entities (1.2).

2. Relation Extraction and Classification.
This subtask addresses the whole end-to-end
pipeline of relation extraction. Given abstracts

of scientific papers annotated with entities,
systems are required to extract pairs of entities
in a semantic relation, as well as assign a label
and directionality to the extracted relation.

We participated in the subtask 1.1, relation classi-
fication on clean data, and subtask 2 (relation ex-
traction only). Our approach relies on supervised
learning using Support Vector Machines (SVMs),
k-Nearest Neighbors (kNNs), and Convolutional
Neural Networks (CNNs). We were ranked 16th
on task 1.1 with an F1 score 44.0% and 7th on
task 2 with an F1 of 28.4%.

2 Related Work

A series of supervised systems for extracting
keyphrases and relations in scientific publications
was presented in the context of the SemEval task
10 in 2017 (Augenstein et al., 2017). In contrast
to the present task formulation, the set of relations
consisted only of two, namely hyponymy and syn-
onymy. For this task, the best systems were those
based on neural approaches.

Lee et al. (2017) obtained the highest score by
employing a convolutional neural network with
a specific embedding layer encoding manually
crafted features such as the word, the position of
the word and the part-of-speech (POS) tag. The
second best system was a neural end-to-end model
by Ammar et al. (2017). It predicted the relation
types based on a context-sensitive representation
of the keyphrases which they obtained by using
a variety of information, e.g., entity type embed-
dings and syntactic and sequential path informa-
tion generated by a bidirectional Long Short-Term
Memory (LSTM) layer. As opposed to the former
systems, the approach of Barik and Marsi (2017),
ranked third, was based on manually crafted fea-
tures and more traditional classifiers such as deci-
sion trees and SVMs.
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Outside SemEval, Zelenko et al. (2003) pro-
posed different kernel methods combined with
the SVM and Voted Perceptron learning algo-
rithms for extracting person-affiliation
and organization-location relations. An-
other kernel-based approach using different
sources of syntactic information was presented by
Zhao and Grishman (2005).

Our neural approach is inspired by the work
of Nguyen and Grishman (2015), who employ a
CNN with word embedding and position embed-
ding lookup. Embeddings are concatenated for
obtaining positionally and semantically sensitive
token representations and then fed into a convolu-
tional layer, followed by a maximum pooling layer
and a fully connected feed-forward network with
a softmax classifier.

3 Methodology

3.1 Feature-based Approach

Feature Engineering. For our feature-based ap-
proach we explored the following pool of features.

1. Structural Features. We compute for each en-
tity the distance to the last and next entity and
the relative position of the entity in the sentence.
Furthermore, assuming that verb phrases are a
strong indicator for the specific type of relation-
ship, we also add the distance to the next verb.

2. Lexical features. We include the first and last
five letters of the given surface form of each en-
tity. Furthermore, for each word we add the last
and next three words in the surrounding context
window and the word length. Again emphasiz-
ing the relative importance of verbs, we specif-
ically encode the last and the next verb. Man-
ual exploration of the training data revealed pat-
terns such as the preposition ‘of’ and the verb
‘use’ being a strong indicator of the relations
PART WHOLE and USAGE respectively. There-
fore, we add two binary features hasOf and
hasUse. The last lexical feature we employ
is the Tf-Idf representation of the sentence.

3. Syntactic features. We use the POS tag of each
word as shallow syntactic feature.

4. Semantic features. In order to add semantic in-
formation we employ an embedding represen-
tation of the sentence by averaging the GloVe

word embeddings pretrained on Wikipedia
2014 and Gigaword 5.1

Experimental Setup. We experimented with
two classifiers, namely linear SVM and kNN. Both
models were wrapped in a 5-fold cross validation
in order to obtain performance estimates on the
whole training set. Furthermore, we tuned the hy-
perparameters of the models by nesting the cross
validation in a grid search, optimizing the penalty
term c of the linear SVM given the search space
c ∈ {0, 001, 0.01, 0.1, 1, 10} and weighting the
penalty term either balanced according to the dis-
tribution of the classes or leaving all classes with
equal penalty. In the relation classification, we
also experimented with one-vs-rest and Crammer-
Singer as multi-class classification strategies.

Similarly, for the kNN we optimized the num-
ber of neighbors in the search space k ∈
{3, 5, 7, 9} and tried uniform weighting and
weighting neighbors based on their inverse dis-
tance. All other parameters were left to the default
values provided by scikit-learn,2 which we used as
implementation framework.

To find suitable subsets of our heuristically ex-
tracted pool of features, a forward feature selec-
tion was employed.

3.2 Deep Learning-based Approach
Model Architecture. We employ a CNN (Le-
Cun and Bengio, 1998) for the relation extrac-
tion task, which was first introduced to the natural
language processing community by Collobert and
Weston (2008). Our CNN architecture is inspired
by Nguyen and Grishman (2015) and consists of
four main layers: (1) embedding layer, (2) convo-
lutional layer, (3) maximum pooling layer, and (4)
fully connected output layer.

In a first step, given a word and its relative po-
sition in the sentence, we lookup the accompany-
ing vector representations and concatenate them in
order to obtain a position-sensitive semantic repre-
sentation of the token. Next, the model convolutes,
i.e., slides, over the embeddings to capture the
context of the token in a window of size k, which
is followed by subsampling the obtained matrices
using maximum pooling, e.g., preserving the N
maximal values. This allows the model to recog-
nize the most informative k-grams for the task. In
a last step, the representations are fed into a fully

1
https://nlp.stanford.edu/projects/glove/

2
http://scikit-learn.org/
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word d1 d2 entity ID
word 0 -9 C08-1105.1
Semantic 0 -8 C08-1105.1
Role 0 -7 C08-1105.1
Labeling 1 -6 none
are 2 -5 none
usually 3 -4 none
limited 4 -3 none
in 5 -2 none
a 6 -1 none
syntax 7 0 C08-1105.3
subtree 8 0 C08-1105.3

Table 1: Example of how we assign relative posi-
tion to training and test instances.

connected layer followed by a softmax classifier
predicting the label.

Experimental Setup. As input to the model we
feed pairs of candidate entities together with the
textual content between them. As the CNN ex-
pects fixed-size vector representations, we pad the
texts to the length of the longest sequence us-
ing a special token to which we assign a ran-
dom embedding vector. We compute the rela-
tive position for each word wi as distance vec-
tor di = [di1, di2]. Table 1 shows a example
of how we assign relative distances to each word
in our instances. The word embedding matrix is
initialized with 300-dimensional domain-specific
word embeddings from Lauscher et al. (2017),
which showed during prototyping superior per-
formance when compared with standard domain-
independent ones. Finally, we obtain a position-
sensitive representation of the word wi by concate-
nating its embedding ei as well as the position em-
bedding into a single vector vi = [ei, di1, di2].

Since the data for the relation extraction task
is highly skewed towards the number of negative
instances (i.e., only 1,228 out of 8,768 are posi-
tive), we decided to experiment with data balanc-
ing techniques. More specifically, we tried upsam-
pling the positive instances applying an upsam-
pling rate ru ∈ [1, 5] and similarly, downsampling
the negative instances with a rate rd ∈ [0.1, 1].

Optimizing the hyperparameters of our model,
we experimented with the numbers of CNN fil-
ters in range f ∈ [50, 500] and with a filter size
s ∈ [3, 15]. For the regularization of our model
we apply dropout before the fully connected layer
and experimented with a dropout keep probabil-

Class Count Ratio
Usage 483 39.33%
Model-Feature 326 26.55%
Part whole 234 19.06%
Topic 95 07.74%
Result 72 05.86%
Compare 18 01.47%
Total 1,228 100%

Table 2: Class distribution in the training data.

ity of d ∈ [0, 1]. For all other hyperparameters
we use the values from Nguyen and Grishman
(2015). Last, in order to make our models com-
parable among each other, we nested the CNN in
a 5-fold cross validation.

4 Evaluation

Here, we briefly give an overview of the data pro-
vided by the organizers of the shared task as well
as our submitted runs. We also present and discuss
the final results achieved.

Data. The training data provided by the task or-
ganizers for subtask 1.1 and subtask 2 is com-
posed of 350 abstracts of scientific publications
with manually annotated entities and relations. In
total, the number of relation instances amounts to
1,228 samples. Table 2 shows the distribution of
the labels for the relation classification.

For the relation extraction task, entity pairs for
all semantic relations appear in the very same sen-
tence. Therefore, we generate relation candidates
by pairing all entity mentions found within the
same sentence boundary. This way we end up with
8,386 candidate entity pairs among which 1,228
are positive instances.

The test data for task 1.1 and 2 was provided in
the same format as training data, containing 150
abstracts and 355 relation instances (for subtask
1.1 only).

Submitted runs. We selected two models for
the relation classification and three models for the
relation extraction task for the final submission ac-
cording to their scores on the development data us-
ing the official scoring script. The model config-
urations are summarized in Table 3 and Table 4,
respectively.

Final Results. The official scores for the sub-
mitted models are listed in Tables 5 and 6.
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Model Hyperparameter Choice Features
SVM c 1 tfidf

multi class one-vs-rest isReverse
class weight balanced nextEntityDist(x)

position(y)
POStag(x)

kNN k 5 tfidf
weights distance isReverse

hasOf

Table 3: Submitted models for task 1.1 (relation
classification). In the features listed, x represents
the first entity while y represents the second entity
of a candidate pair.

Model Hyperparameter Choice Features
SVM c 0.1 position(x,y)

class weight balanced lastEntityDist(y)
nextEntityDist(x)
tokenLength(y)
POStag(x,y)
firstLetter(y)

kNN k 3 relativePosition(x,y)
weights distance lastEntityDist(y)

position(y)
avgEmbedding
hasUse
POStag(x,y)

CNN dropout 0.5 word embedding
upsampling rate 3 relative position
number of filters 200
filter size 3-8

Table 4: Submitted models for task 2 (relation ex-
traction). In the features listed, x represents the
first entity while y represents the second entity of
a candidate pair.

In the relation classification task, SVM achieves
better performance than kNN by a large margin,
while in the relation extraction task, it is the deep
learning models that perform best. Within the
scope of the traditional models, SVM consistently
outperforms kNN for both the classification (on
every relation type, cf. Table 5), as well as the ex-
traction task (Table 6). Furthermore, for task 1.1,
SVM performed better than kNN, in every relation
type. The reason could be that the vector-like fea-
tures we used, such as Tf-Idf and the binary POS-
tags, suit better for SVM, while kNN was not able
to handle the high-dimensional dataset.

For task 2 the linear SVM model results in a
relatively high recall but considerably low preci-
sion. This result could be related to the follow-
ing reasons. First, since the training data is highly
skewed towards negative examples as described in
subsection 4, more false positive cases are pre-
dicted. Second, the data is likely to be nonlin-

Class SVM kNN
Usage 73.68% 63.04%
Model-Feature 51.70% 43.97%
Part Whole 45.53% 34.90%
Topic 22.22% 00.00%
Result 37.50% 37.50%
Compare 26.32% 12.12%
Macro F1 44.00% 32.49%

Table 5: Results (F1) on relation classification
(task 1.1).

Precision Recall F1
SVM 15.67% 90.19% 26.70%
kNN 9.93% 11.44% 10.63%
CNN 18.84% 57.49% 28.38%

Table 6: Results on relation extraction (task 2).

early distributed. As a result, the linear SVM is
not able to perform better even when increasing
feature dimensionality. In addition to a better fea-
ture engineering, we explored the use of an Radial
Basis Function (RBF) kernel and Gradient Boost-
ing Tree to increase the precision without hurting
the recall. Another interesting point is that the
improvement of precision contributed more to the
overall F1-score in this official evaluation method.
This can be inferred from the results listed in Ta-
ble 6, where the CNN has higher F1-score, with a
higher precision but much lower recall compared
to the SVM.

5 Conclusion

In this paper we have presented our approach to
the SemEval 2018 Task 7 on extracting and clas-
sifying semantic relations from scientific publica-
tions. We experimented with feature-based versus
neural models. For the classification task, SVM
performed better than kNN, although both show
problems in predicting minority classes with few
examples. For the extraction task, the deep learn-
ing method outperformed SVM by a narrow mar-
gin. The overall comparable results across meth-
ods seem to indicate that, in the future, more work
should turn to devising better features or architec-
tures that are able to capture the nuances of seman-
tic relations in the domain of scientific texts.
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