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Abstract

We present SUNNYNLP, our system for solv-
ing SemEval 2018 Task 10: “Capturing Dis-
criminative Attributes”. Our Support-Vector-
Machine(SVM)-based system combines fea-
tures extracted from pre-trained embeddings
and statistical information from Is-A taxon-
omy to detect semantic difference of concepts
pairs. Our system is demonstrated to be ef-
fective in detecting semantic difference and
is ranked 1st in the competition in terms of
F1 measure. The open source of our code is
coined SUNNYNLP1.

1 Introduction

Measuring semantic similarity between words has
been a fundamental issue in Natural Language
Processing (NLP). Semantic similarity measure-
ments are used to improve downstream applica-
tions including paraphrase detection (Xu et al.,
2014), question answering (Lin, 2007), taxonomy
enrichment (Jurgens and Pilehvar, 2016) and dia-
logue state tracking (Mrksic et al., 2016).

Despite the current success in using semantic
model to measure semantic similarity, lesser at-
tention is paid to teaching machines to make refer-
ence (Searle, 1969; Abbott, 2010) to the real world
in detecting semantic difference. The semantic
difference detection problem can be formalized as
a binary classification task: given a triplet (con-
cept1, concept2, attribute) which comprises two
concepts (e.g. apple, banana) and one attribute
(e.g. red), determine whether the attribute charac-
terizes the former concept but not the latter. Com-
pared to pairwise semantic similarity detection,
this problem is more complex than measuring sim-
ilarity in general because of its underlying asym-
metric property and the extra attribute involved.
The SemEval 2018 Task 10 (Krebs et al., 2018) is

1https://github.com/Yermouth/sunnynlp

therefore posed to attract attention to solving this
problem.

Although the task of semantic difference detec-
tion is novel, similar tasks like referring expres-
sion generation (REG) have been studied in the
literature. Resources such as ontologies, knowl-
edge bases (Krahmer and Van Deemter, 2012) and
images (Kazemzadeh et al., 2014; Lazaridou et al.,
2016) are used to learn referring expressions. The
major difference between the present task and re-
ferring expression is that REG systems can choose
salient attributes for making successful reference
to objects, while our system is required to decide
whether a given attribute can be used to differenti-
ate two similar objects.

The rest of the paper is organized as follows:
Section 2 explains our motivation and approach.
Section 3 describes the official and external data
used. Section 4 details our system implementa-
tion. We analyze and discuss the result in Section
5 and conclude our work in Section 6.

2 General Approach

Our approach to this problem is to divide
the ternary concept-concept-attribute relationship
(concept1, concept2, attribute) into two concept-
attribute relationships (concept, attribute)2. The
ternary relationship will hold only when the first
pair of concept-attribute relation is true and the
second false. This approach allows us to use well
developed pairwise similarity measurements to ex-
tract semantic information from the two concept-
attribute pairs, and aggregate the features to train a
support vector machine (Cortes and Vapnik, 1995)
to detect semantic difference of the triplet, i.e.
identifying whether a concept contains a specific
attribute is a key task of our system.

2For instance, dividing the concept-concept-attribute rela-
tionship (apple, banana, red) into two concept-attribute rela-
tionships: (apple, red) and (banana, red).
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Concept-instance example (Is-A) from Probase
(yellow food, lemon)

Possible concept-attribute (Has-A) pairs
(yellow, food), (food, yellow), (yellow, lemon),
(lemon, yellow), (food, lemon), (lemon, food)

Useful concept-attribute (Has-A) pairs
(lemon, yellow)

Semantic difference triplet in official test cases
(lemon, cranberry, yellow)

Table 1: Concept-attribute pairs (Has-A) can be in-
ferred from concept-instance (Is-A) entries in taxon-
omy, and used to determine whether a semantic differ-
ence relationship (concept1, concept2, attribute) holds
in official test cases.

By observation, we draw similarities be-
tween concept-attribute relationship and meron-
omy (Has-A). They are similar in a sense that both
describe subtype relationships. Although linguis-
tics resources constructed by human subjects in-
cluding norms and priming effect data can help
us detect and verify these relationships effectively,
they are not allowed to be used in this SemEval
Task.

This SemEval Task also limits the scope of con-
cepts and attributes to concrete concepts and vi-
sual attributes only. As instances of the same con-
cept are likely to share common attributes from
our intuitive perspective3, we would like to ex-
periment on extracting meronomy (Has-A) infor-
mation from hypernymy (Is-A) pairs. Taxonomies
and ontologies which contain rich Is-A informa-
tion in terms of concept-instance pairs are there-
fore the key external linguistic resources which we
rely on to extract concept-attribute relationships.

Another intuition that guides our research direc-
tion is that modifiers such as adjectives, adverbs
and noun modifiers are useful for capturing salient
attribute of a specific class of objects4. As modi-
fiers are used to describe the scope of concepts or
specify context of instances, we can leverage on

3As both apple and banana are hypernyms of fruit, i.e. ap-
ple Is-A fruit and banana Is-A fruit. If we know apple is “edi-
ble”, then banana may have a higher chance of being “edible”
by intuition because “edible” can be a common attribute for
most fruits.

4When we want to differentiate one object from another,
we usually use a salient and outstanding attribute to describe
the object instead of using a common or similar attribute.
Similar viewpoint is previously raised in (Pechmann, 1989;
Dale and Haddock, 1991), which states that human beings
prefer using efficient and sufficiently distinguishing descrip-
tion when they are constructing referring expressions.

the co-occurrence probability of modifiers to ana-
lyze their dependence/independence relationships
with different concepts, and hence, to determine
whether a concept-attribute relationship holds.

As the SemEval Task limits the word length of
the concept and attribute to be 1, we can enu-
merate all possible pairs of modifiers and con-
cepts from large scale taxonomy and ontology and
use them as features to train our system. Table 1
shows an Is-A entry in taxonomies which we find
instructive for learning semantic difference rela-
tionship. For instance, verifying whether semantic
difference relationship holds for the triplet (lemon,
cranberry, yellow) would require the information
of “lemon has the attribute yellow?” and “cran-
berry does not have the attribute yellow?”. With
the Is-A pair (yellow food, lemon) from Probase,
we can extract possible concept-attribute pairs and
their frequency to train our system, such that our
system knows with high probability that lemon has
the attribute yellow while cranberry does not.

3 Data

We use the official dataset together with two exter-
nal linguistic resources, GloVe (Pennington et al.,
2014) and Probase (Wu et al., 2012; Cheng et al.,
2015), to train our system.

3.1 Official Dataset
Official datasets5 are split into three parts – train-
ing, validation and testing, where the testing holds
a disjoint attribute sets apart from training and val-
idation. This further increases the difficulty of
the task as it prevents lexical memorization (Roller
et al., 2014; Levy et al., 2015; Weeds et al., 2014)
and tests for generalization.

3.2 Probase
Probase is a web scale open domain taxonomy
which uses Hearst patterns (Hearst, 1992) to ex-
tract Is-A relationship from web documents. Each
Is-A entry in Probase is represented as a triplet
form: super-concept, sub-concept and number of
co-occurrence. We choose Probase for two main
reasons:

1. Large number of concepts covered: The
number of concepts covered in Probase (Wu
et al., 2012) exceeds other publicly available

5in the form of concept-concept-attribute triplet with hu-
man annotated label indicating whether semantic difference
exists.
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Figure 1: System architecture pipeline diagram.

taxonomies and ontologies including Word-
Net (Miller, 1995) and YAGO (Suchanek
et al., 2007)6.

2. Rich in semantic features: Probase provides
Is-A relationship pairs with concepts of dif-
ferent senses and abstraction levels, which
allows our system to extract rich statistical
information for training. For instance, Is-A
pairs in Table 2 are extracted from Probase.

3.3 GloVe
Pre-trained embeddings such as Word2Vec
(Mikolov et al., 2013), GloVe (Pennington et al.,
2014) and FastText (Bojanowski et al., 2016)
encode syntactic and semantic relationships of
words in low-dimension space, which is crucial to
the capturing of semantic difference. We use the
GloVe embedding pre-trained on both Gigaword
corpus and 2014 Wikipedia dump in our final
submission system.

4 System Description

Our system architecture pipeline (Figure 1) in-
cludes the process of data preprocessing, feature
extraction and classifier selection.

4.1 Data Preprocessing
Preprocessing procedure is applied to Probase in-
cluding:

6Probase includes 2,653,872 concepts while WordNet and
YAGO contain 25,229 and 352,297, respectively.

Partition Concept-Instance(Is-A) example Size
1 to 1 (fruit, banana) 2.12M
N to 1 (high sugar fruit, banana) 7.91M
1 to N (plant, banana tree) 9.32M
N to N (dried fruit, banana chip) 14.01M
Total 33.37M

Table 2: Partitioning of dataset into 4 subsets with an
example entrand partition size provided.

Frequency Type Feature Extracted
Individual word (dried), (fruit), (banana), (chip)

Concept-Concept (dried, fruit)
Instance-Instance (banana, chip)
Concept-Instance (dried, banana), (dried, chip),

(fruit, banana), (fruit, chip)

Table 3: Example of how individual word frequency
(the first row) and three types of co-occurrences (the
last three rows) are counted for the Is-A pair (dried fruit,
banana chip) in Probase.

• Lemmatization: As Probase is crawled us-
ing a rule-based system, we lemmatize the
data using stanford CoreNLP (Manning et al.,
2014) to reduce words of different forms and
allow better matching between Is-A entries in
taxonomy and official dataset.

• Data partitioning: To give our system addi-
tional information regarding the adjectives,
adverbs and modifiers of both concepts and
instances, we partition Probase into 4 sub
datasets, according to the word length of the
concept and instance pair. For instance, par-
tition “1 to 1” indicates that both concept and
instance are of word length 1. Partition “N to
1” indicates concepts of arbitrary word length
(more than 1) and instances of word length 1.
Example of each partition are given in Table
2.

4.2 Feature Extraction

4.2.1 Statistical Features
As for statistical features, we consider the statisti-
cal features of the individual words, i.e. concept1,
concept2, attribute, and the two concept-attribute
relationship pairs, i.e. (concept1, attribute),
(concept2, attribute)) using individual or co-
occurrence frequency in Probase.

Word frequency is extracted from individual
words, and the following features are extracted
from the Is-A pairs:

• Co-occurrence frequency
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Model (Features) Valid(cv=5) Train/Test Train+Valid/Test Valid/Test
SVM(GloVe, Probase) 0.790 0.644 0.714 0.754
SVM(FastText, Probase) 0.764 0.649 0.709 0.757
SVM(Word2Vec, Probase) 0.757 0.636 0.721 0.732
Logistic Regression(Probase) 0.698 0.602 0.644 0.717
SVM(Probase) 0.730 0.553 0.637 0.691
Logistic Regression(GloVe, Probase) 0.753 0.607 0.674 0.674
SVM(GloVe) 0.712 0.597 0.652 0.668
SVM(FastText) 0.689 0.563 0.593 0.650
SVM(Word2Vec) 0.667 0.556 0.581 0.634

Table 4: Result (F1-score) obtained by our system. The underlined value represents the score of our official
submission. Best scores for each partition are denoted in boldface.

• Pointwise Mutual Information(PMI) (Fano,
1961; Church and Hanks, 1990)

• Asymmetric Pointwise Mutual Informa-
tion(APMI)

There are three types of pairwise word
co-occurrence frequencies, including Concept-
Concept, Instance-Instance and Concept-Instance.
All types of frequencies are calculated for all parti-
tions as distinct features. Table 3 gives an example
of how occurrence and co-occurrence are counted.
We apply logarithm to the statistical features to re-
duce the scale of frequently occurring words.

4.2.2 Word Embedding Features

We use the Python package Gensim (Rehurek
and Sojka, 2010) to match each word in the
triplet (concept1, concept2, attribute) in the offi-
cial dataset with their corresponding pre-trained
vectors vcon1, vcon2, vattr, each of 300 dimen-
sions. We then divide the triplet into three pairwise
relationships i.e. (vcon1, vcon2), (vcon1, vattr), and
(vcon2, vattr), and calculate the cosine similarity
and L1-norm of the vector difference of these pairs
as features. Dot-product is considered initially but
removed as it adversely affects the performance of
our system.

4.3 Classifiers

Using the same set of word embedding and statisti-
cal features, we compared the performance of four
off-the-shelf classifiers including SVM (Cortes
and Vapnik, 1995), Logistic Regression Classifier,
Decision Tree Classifier and Random Forest Clas-
sifier. SVM classifier with RBF kernel (Vert et al.,
2004) is used in our system as it outperforms other
classifiers in terms of precision and F1-score.

5 Results and Discussion

5.1 Results

We provide the results of our system with different
combinations of features and datasets in Table 4.
Column Train+Valid/Test represents the F1-score
obtained by training our system with both the
training partition and validation partition, while
column Train/Test and Valid/Test are F1-score ob-
tained by training our system on the training parti-
tion and validation partition individually. Training
our SVM system with Probase and GloVe (or Fast-
Text) gives the best result in terms of F1-score for
official evaluation (column Valid/Test). Our sys-
tem achieves a F1-score of 0.754 and outperforms
those of the other teams.

5.2 Discussion

During the competition phase, we noticed that our
system performs better when we did not use train-
ing partition together with validation partition. As
the entries in the training partition are automati-
cally generated, there may be false entries or noise
which can adversely affect our system. Since the
validation partition comprises manually curated
examples, we evaluate our models using 5-fold
cross validation on the clean validation partition
only (indicated by column Valid(cv=5)).

6 Conclusion

In this paper, we have discussed how our sim-
ple yet effective SVM system leverages on hy-
pernymy (Is-A) relationships and word embed-
dings to detect single word semantic difference
relationship. SVM has been shown useful espe-
cially in performing semantic relationship detec-
tion tasks (Filice et al., 2016; Panchenko et al.,
2016). We would like to extend our system for
detecting multiple-words semantic difference re-
lationship, and to broaden the scope of concepts
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and attributes from visual only to sound and taxo-
nomic.

As our system separates a concept-concept-
instance relationship into two concept-instance re-
lationships, our system is relatively weak in cap-
turing attributes that are comparative or fuzzy, for
instance, young and tall. It would be interesting to
explore how semantic difference relationship can
be embedded into taxonomies, ontologies and vec-
tor representations, so that comparative attributes
can be comprehensively and directly captured.
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