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Abstract
This paper describes the SemEval 2018 Task
10 on Capturing Discriminative Attributes.
Participants were asked to identify whether an
attribute could help discriminate between two
concepts. For example, a successful system
should determine that urine is a discriminating
feature in the word pair kidney,bone. The aim
of the task is to better evaluate the capabili-
ties of state of the art semantic models, beyond
pure semantic similarity. The task attracted
submissions from 21 teams, and the best sys-
tem achieved a 0.75 F1 score.

1 Introduction

State of the art semantic models do an excellent
job at detecting semantic similarity, a traditional
semantic task; for example, they can tell us that
cappuccino, espresso and americano are similar to
each other. It is obvious, however, that no model
can claim to capture semantic competence if it
does not, in addition to similarity, predict seman-
tic differences between words. If one can tell that
americano is similar to cappuccino and espresso
but cannot tell the difference between them, one
only has a very approximate idea of the meaning
of these words. As a step beyond similarity, one
should at the very least recognize that americano is
bigger than espresso, and that capuccino contains
milk foam. In this spirit, we present Semeval 2018
Task 10 (Capturing Discriminative Attributes) as a
new challenge for lexical semantic models.

1.1 Task description
A semantic model that has only been evaluated
on similarity detection may very well fail to be
of practical use for specific applications. For ex-
ample, word sense disambiguation could benefit
greatly from representations that can model com-
plex semantic relations. This means that the eval-
uation of word representation models should not

only be centered on semantic similarity and relat-
edness, and should include different, complemen-
tary tasks. To fill this gap, we proposed a novel
task of semantic difference detection as Task 10 of
the SemEval 2018 workshop. The goal of the sys-
tems in this case was to predict whether a word is a
discriminative attribute between two other words.
For example, given the words apple and banana,
is the word red a discriminative attribute?

Semantic difference is a ternary relation be-
tween two concepts (apple, banana) and a dis-
criminative attribute (red) that characterizes the
first concept but not the other. By its nature, se-
mantic difference detection is a binary classifica-
tion task: given a triple apple,banana,red, the task
is to determine whether it exemplifies a semantic
difference or not.

In practice, when preparing the task, we
started out with defining potential discriminative
attributes as semantic features in the sense of
(McRae et al., 2005): properties that people tend
to think are important for a given concept. McRae
et al.’s features are expressed as phrases, but these
phrases can usually be reconstructed from a single
word (e.g. red as a feature of apple stands for the
phrase is red, carpentry as a feature of hammer can
be used as a shorthand of used for carpentry, etc.)
Given this general reconstructability, we have for
simplicity used single words rather than phrases
to represent features. The same solution was also
adopted in the feature norming studies by (Vinson
and Vigliocco, 2008) and (Lenci et al., 2013).

Following McRae et al., we did not define dis-
criminative features in purely logical but rather
in psychological terms. Accordingly, features are
prototypical properties that subjects tend to asso-
ciate to a certain concept. For example, not all ap-
ples are red and some bananas are, but red tends to
be judged as an important feature of apples and not
of bananas. We therefore fully trust human anno-
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tators in deciding what counts as a distinguishing
attribute and what does not.

1.2 Motivation

Exploring semantic differences between words
can allow us to grasp subtle aspects of meaning:
while it is relatively easy to train a model to rec-
ognize that apple and banana are somewhat simi-
lar, it is less straightforward to learn that, contrary
to an apple, a typical banana is not red. This task
is therefore more challenging than, and comple-
mentary to, the traditional similarity task, and we
expect it to contribute to the progress in computa-
tional modeling of meaning.

While semantic similarity and relatedness mea-
sures have been used extensively to evaluate se-
mantic representations, they may not be sufficient
as a method for evaluating lexical semantic mod-
els (Faruqui et al., 2016; Batchkarov et al., 2016).
Firstly, it has been noted that the relevant notions
of similarity and relatedness can vary depending
on the linguistic context, on the downstream ap-
plication, etc. The difference task resolves this
concern by effectively providing a context. In
our example, comparison with bananas determines
the relevance of the redness attribute for apples,
which, out of context, might not necessarily be a
salient attribute of apples.

Existing similarity and relatedness datasets
have also been criticized for low inter-annotator
agreement. The semantic difference detection task
alleviates this issue, too. Binary choice is easier
for human annotators than rating on a continuous
scale, and produces more consistent patterns of an-
swers. In our pilot study, the agreement between
annotators was over 0.80. To further ensure the
quality of our data, we discarded any items that
caused disagreement.

1.3 Expected impact

The semantic difference task can enable further
progress in the field of word representation learn-
ing. Indeed, state of art models have reached ceil-
ing performance in the tasks of semantic similar-
ity and relatedness (in part because the ceiling, as
determined by the agreement of human subjects,
is relatively low). Another commonly employed
task, analogy, has its own issues (Linzen, 2016)
and effectivey boils down to similarity optimiza-
tion (Levy and Goldberg, 2014). A new general
evaluation task for lexical semantics is long due,

and we hope that the semantic difference task is
capable of filling this gap.

In the future, solving the discriminative at-
tributes task could help in a range of applica-
tions, from conversational agents (choosing lex-
ical items with contextually relevant differential
features can help create more pragmatically appro-
priate, human-like dialogues), to coreference res-
olution (differentiating features of concepts men-
tioned or alluded to in text could help in reference
disambiguation), to machine translation and text
generation, where explicitly taking into account
semantic differences between competing transla-
tion variants can improve the quality of the output.

2 Data and resources

2.1 Overview

One can express semantic differences between
concepts by referring to attributes of those con-
cepts. A difference can usually be expressed as
presence or absence of a specific attribute. For in-
stance, one of the differences between a narwhal
and a dolphin is the presence of a tusk.

The task dataset includes 5062 manually veri-
fied triples of the form <word1,word2,attribute>.
The set is built in such a way that the attribute
in each positive example characterizes the first
word of the triple. For example, in Table 1,
wings is an attribute of airplane. The word pair
[airplane,helicopter] is included in the
order [helicopter,airplane] if helicopter
has a feature that airplane does not have. We
thereby assume, in contrast to the standard for-
malization of similarity, that semantic difference
is not symmetric: the triple apple,banana,red is
a semantic difference but banana,apple,red is not
since red is not an attribute of bananas.1

We supplemented positive data (as described
above) with negative examples. Two types of
negative examples were added: examples where
the attribute is shared between word1 and word2
(both concepts have the attribute in question), and
examples where the attribute is neither an attribute
of word1 nor word2 (both concepts lack the at-
tribute). For that last type of attributes, since their

1This is a somewhat arbitrary choice. One could experi-
ment with a symmetric notion of a discriminative attribute,
whereby both apple,banana,red and banana,apple,red are
considered examples of semantic difference, but in our opin-
ion such an approach would only make the task more chal-
lenging.
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word1 word2 attribute

airplane helicopter wings
bagpipe accordion pipes
dolphin seal fins
gorilla crocodile bananas
oak pine leaves
octopus lobster tentacles
pajamas necklace silk
skirt jacket pleats
subway train dirty

Table 1: Sample data: Word pairs and their distinguish-
ing features (positive examples)

number is potentially huge, the examples were se-
lected randomly so that the number of negative ex-
amples matches the number of positive examples.
Presence of both positive and negative examples
makes it possible to train a binary classifier that,
for a given triple, predicts whether the attribute is
a difference between word1 and word2.

word1 word2 attribute

tractor scooter wheels
crow owl black
squirrel leopard fur
pillow jacket white
dresser cupboard large
spider elephant legs
gloves pants wool
gorilla panther long
scarf slippers colours
lion zebra large

Table 2: Sample data: Word pairs and non-
distinguishing features (negative examples)

Approximately half of the manually checked
triples was given to participants as a validation
set for parameter tuning of their systems, the rest
was used for testing (cf. Section 2.4 for detailed
statistics about the dataset composition). A larger
training set of almost 18K examples (automati-
cally constructed by the procedure described be-
low, without manual filtering) was provided for
training parameter-rich systems.

2.2 Data collection and annotation
When creating the dataset, we started from the ap-
proach that Lazaridou et al. (2016) used for visual
discriminating attribute identification, followed by
manual filtering for the test and validation data.
Dataset creation consisted of three phases:

1. Semi-automatically created triples (section
2.2.1)

2. Manually created triples (section 2.2.2)

3. Automatically created triples (section 2.2.3)

As an initial source of data, we used the fea-
ture norms collected by McRae et al. (2005) and
created a pilot dataset (Krebs and Paperno, 2016).
This set was then reverified and manually ex-
tended to improve the quality and the variety of
the data. Finally, a large number of triples were
automatically generated for training purposes.

2.2.1 Triples from Mcrae norms
The first part of the dataset was created semi-
automatically by identifying discriminative at-
tributes of the concepts in the McRae norms,
which consist of a list of features for 541 concepts
(living and non-living entities), collected by ask-
ing 725 participants to produce features for each
concept. Production frequencies of these attributes
indicate how salient they are. Concepts that have
different meanings had been disambiguated be-
fore being shown to participants. For example,
there are two entries for bow, bow (weapon)
and bow (ribbon).

Because our task is not intended to test word
sense models, we did not differentiate between en-
tries that have multiple senses and ignored the dis-
ambiguating phrase. In our dataset, the concept
bow has the attributes of both the weapon and the
ribbon. This is not problematic because we do not
refer to more than one attribute at a time, so senses
of a word do not mix.2 The McRae dataset uses the
brain region taxonomy (Cree and McRae, 2003)
to classify attributes into different types, such as
function, sound or taxonomic. For the construc-
tion of our dataset, we decided to only work with
visual attributes, which exist for all concrete con-
cepts, while attributes such as sound or taste are
only relevant for some classes of concepts.

Any one word concept that has at least one vi-
sual attribute was considered a candidate. Each

2An anonymous reviewer points out that the presence or
absence of a feature in w1 can be influenced by the context
of w2: e.g. tail could be considered a distinguishing feature
for the pair mouse,cheese but not for mouse, keyboard, be-
cause keyboard primes the device sense of the word mouse
as opposed to the animal sense. Such strong contextualiza-
tion effects could make our task even more interesting, but
we believe that these cases are too rare to strongly influence
the outcomes.

734



candidate concept was paired with another candi-
date concept from the list of its 100 closest neigh-
bours in a PPMI-based distributional vector space
(using the best settings from Baroni et al. (2014)).
The motivation for this step is that finding non-
trivial semantic differences only makes sense in
the context of related words; detecting the differ-
ence between two unrelated concepts, such as a
narwhal and a tractor, is rather trivial and would
not constitute a very interesting task.

For each word pair, if there was an attribute
in McRae feature norms that the first word has
but the second doesn’t, the word pair – attribute
triple was added to the list of candidate positive
examples. For simplicity, multi-word attributes
were processed so that only the last word is taken
into account (e.g. has wings becomes wings).
At this point, we had 512 unique concepts, 1645
unique attributes, 6355 unique word pairs, and
41723 triples (word pair-concept combinations).
A random sample of triples was selected for man-
ual annotation.

For candidate positive examples, two annotators
agreed to keep 45.2% of items, agreed to discard
33% of items, and disagreed on 21.8% of items.
A total of 54.8% of candidate positive examples
were discarded. Among the negative examples,
12.5% of items were discarded. Annotators agreed
to keep 87.5% of items, agreed to discard 0.8% of
items, and disagreed on 11.6% of items. The ex-
amples that both annotators agreed to discard from
the positive examples were added to the negative
examples. Finally, the third author manually fil-
tered the data removing dubious examples.

2.2.2 Manual triples
In the second phase, we extended the dataset by
adding new concepts and attributes. Our intention
was to make the dataset more diverse and more
representative of the noun lexicon by including
words and features that are not part of the McRae
feature norms (e.g., human nouns such as doctor
or student).

To select new nouns, we used SimLex-999 (Hill
et al., 2015), one of the largest and most popu-
lar datasets for semantic similarity. We extracted
from SimLex all the nouns with a concreteness
rating above the median, and identified 204 can-
didate items that were not included in the McRae
Norms. Each selected noun was paired with candi-
date concepts from the list of its 20 closest neigh-
bours in the distributional vector space. We then

filtered the neighbors by frequency, keeping the
neighbors that belong to the frequency range of the
original McRae and SimLex vocabulary. We also
made sure at this step that candidate word pairs be-
long to the same WordNet supersense. This latter
constraint was added because distributional mod-
els often return neighbors that are only loosely re-
lated to the target, while finding non-trivial seman-
tic differences makes sense only for words that are
taxonomically similar. We also discarded gram-
matical number pairs like seed/seeds and hyper-
nym/hyponym pairs like doctor/surgeon, since by
definition there is no feature that a hypernym has
but its hyponym does not have.

Each of the three task organizers was given a
third of the resulting 1851 candidate noun pairs
to annotate, generating discriminative and non-
discriminative attributes for each pair. The sug-
gested triples were then manually filtered by the
other two authors.

2.2.3 Random triples

Finally, to further ensure the diversity of exam-
ples and to alleviate any biases unintentionally
introduced in the annotation pipeline, we gener-
ated 500 additional triples by randomly match-
ing words and features produced at earlier stages.
Each of the three authors annotated these ran-
dom triples, which contained mainly negative (mo-
torbike,rifle,liquor) and some positive examples
(e.g. maid,evening,help). Again, only those exam-
ples for which a full consensus of the three authors
existed were kept.

2.3 Training, test and validation partitions

The manually validated dataset of semantic dif-
ferences consists of examples from three sources
described above: combinations of nouns with
McRae features, triples with manually suggested
attributes, and random triples. All of these exam-
ples have been verified by the three authors and
were then randomly split into a validation partition
and a test partition, making sure that no feature oc-
curs in both.

McRae manual random
positive 897 1477 37
negative 634 1656 361

total 1531 3133 398

Table 3: Composition of the manually validated part of
the dataset
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To enable development of systems that require
more training data, we also created a distinct, big-
ger training set that was not manually curated.
The training set was derived from McRae feature
norms using automatically matched examples as
described in 2.1.1, but without manual validation.
We have to note that this training partition is very
noisy, its main advantage being its size. In fact,
the best performing system in our task was trained
directly on validation data.

We further filtered the training set to minimize
lexical overlap between partitions, making sure
that no attribute present in the test set or the vali-
dation set is also present in the training set. For
example, if the attribute “red” appears in some
triple in the test partition, you will not find it any-
where in the training set. This was done to ensure
that models cannot rely on attribute memorization
from training data but are forced to transfer lexical
knowledge from other sources.

2.4 Dataset composition

The final dataset consists of 22884 items, divided
into:

1. A training set of 17782 examples with 515
distinct concepts and 1292 distinct features.

2. A validation set of 2722 examples with 1283
concepts and 576 distinct features.

3. A test set of 2340 triples with 1272 distinct
concepts and 577 distinct features.

The proportion of positive and negative examples
is reported in Table 2.4.

training validation testing
positive 6591 1364 1047
negative 11191 1358 1293

total 17782 2722 2340

Table 4: Total size of the final dataset.

All data used in this task can be accessed from
the competition’s github repository.3

3 Evaluation

3.1 Metrics

The submitted systems were evaluated on F1 mea-
sure, as is standard in binary classification tasks.

3https://github.com/dpaperno/DiscriminAtt/

The evaluation script can be found in the compe-
tition’s github repository. The competition results
can be seen at the corresponding Codalab page.4

Participants were allowed to make up to 2 submis-
sions, resulting in 47 total submissions from 28
different teams (but only 21 teams submitted pa-
pers). Only the better of the two submissions of
each team is included in final results.

3.2 Baselines

Since our task is formalized as binary classifica-
tion, the random baseline has 0.50 accuracy. As
our test set is not perfectly balanced, a most fre-
quent class baseline would get 0.517 F1.

We also computed an unsupervised distribu-
tional vector cosine baseline based on the idea
that a discriminative attribute is close to the word
it characterizes and further away from the other
member of the pair. In the cosine method, each
item is classified as a semantic difference if the co-
sine similarity of word1 and the attribute is greater
than the cosine similarity of word2 and the at-
tribute. To compute the cosine baseline, we used
a PPMI-based vector space with the best settings
from Baroni et al. (2014).

The cosine baseline correctly classifies 0.691 of
positive items and 0.539 of negative items in the
test data, which corresponds to an average F1 mea-
sure of 0.607.

3.3 Human upper bound

In order to obtain a performance upper bound for
our task, we measured how complex it is for ex-
pert human annotators to identify discriminative
attributes. We asked three PhD and post-doc com-
putational linguists to classify a batch of 100 items
randomly sampled from the test set. The annota-
tors received two rounds of training on the task
by classifying a batch of 100 triples from the val-
idation and test sets. The triples used at anno-
tator training and testing stages were all distinct.
Various questions and doubts about the annotation
were clarified before passing to the test annotation
phase. The agreement between aggregated human
judgments (majority vote) and the gold standard
was very high, with an accuracy of 0.9, an F1 of
0.89 for the positive class, and an F1 of 0.91 for
the negative class.
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correct incorrect
positive 724 323
negative 697 596

Table 5: Number of correct and incorrect classifications
for the test set using the cosine baseline.

Rank Team Score
1 SUNNYNLP 0.75
2 Luminoso 0.74
3 BomJi 0.73
3 NTU NLP 0.73
4 UWB 0.72
5 ELiRF-UPV 0.69
5 Meaning Space 0.69
5 Wolves 0.69
6 Discriminator 0.67
6 ECNU 0.67
5 AmritaNLP 0.66
6 GHH 0.65
7 ALB 0.63
7 CitiusNLP 0.63
7 THU NGN 0.63
8 UNBNLP 0.61
9 UNAM 0.60

10 UMD 0.60
11 ABDN 0.52
12 Igevorse 0.51
13 bicici 0.47

ceiling human 0.90
baselines (strong) cosine 0.607

(weak) random 0.517

Table 6: Codalab competition results, compared to
baselines and the human-based performance ceiling.

System type Count Average F1 Best F1
NN 4 0.66 0.73

Rule-based 7 0.63 0.69
SVM / SVC 6 0.68 0.75

XGB 2 0.70 0.73

Table 7: Average and best F1 score per system type.

4 Systems Overview

Table 6 shows the best performing system submit-
ted by each participating team which submitted
descriptions of their systems.

Many participants created custom rules to
tackle the task, using for example cosine similar-

4https://competitions.codalab.org/competitions/17326

Resource type Average F1
WE + KB 0.678

WE 0.638

Table 8: Average F1 score per resource type (KB =
Knowledge Base, WE = Word Embeddings).

ity or co-occurrence frequency thresholds (Mean-
ing Space, Sommerauer et al.; ELiRF-UPV, Gon-
zlez et al.; CitiusNLP Gamallo; UNAM Arroyo-
Fernndez et al.; Discriminator, Kulmizev et al.;
UNBNLP, King et al.; ABDN, Mao et al.;
Igevorse, Grishin).

Some of the most successful systems employed
traditional machine learning algorithms such as
SVMs (SUNNYNLP, Lai et al.; ALB, Dumitru
et al.; Wolves, Taslimipoor et al.; ECNU, Zhou
et al.; UMD, Zhang and Carpuat), SVC (Lumi-
noso, Speer and Lowry-Duda) and Maximum En-
tropy Classifiers (UWB, Brychcn et al.).

Other teams chose to build their systems us-
ing deep learning systems such as neural networks
(GHH, Attia et al.; Shiue et al.), CNNs (THU
NGN, Wu et al.; AmritaNLP, Vinayan et al.) and
XGB classifiers (BomJi, Santus et al.; ECNU,
Zhou et al.).

Participants made use of a large number of re-
sources. Such resources can be divided into word
embeddings (e.g., Word2Vec, GloVe, fastText)
and knowledge base type resources (e.g., Word-
Net, ConceptNet, Probase). Participants’ analyses
of their results indicate that although using knowl-
edge bases can yield high precision results, they
cannot easily cover all cases. When employing
pre-trained word embeddings, participants noted
that out-of-vocabulary items become a challenge.
But most importantly, a shortcoming of word em-
beddings with regard to our task is their inability to
distinguish between different types of semantic re-
latedness. As noted by the GHH team (Attia et al.),
garlic is related to wings not because garlic has the
ability to fly but because garlic chicken wings are a
popular dish choice; a shallow cooccurence-based
model will fail to recognize that wings character-
ize chicken but not garlic.

On average, systems which combined word em-
beddings and knowledge bases outperformed sys-
tems that only used word embeddings (Table 8).
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Subset Accuracy F1 pos F1 neg
Easy 0.98 0.97 0.98
Hard 0.56 0.61 0.66

Hardest 0.38 0.35 0.39

Table 9: Results of human annotation of the Easy,
Hard and Hardest subsets of the test data.

5 Results analysis

We have carried out an in-depth exploration of the
systems results in order to get a better insight on
the relationship between their performance and the
dataset structure and complexity. We ranked all
the test triples by the number of systems that an-
notated them correctly and we selected the 50 top
triples that were scored correctly by the most sys-
tems and the 50 top triples that were failed by most
systems. We called these two subsets the Easy and
the Hard data, respectively. Then, we focused on
the results produced by the top 5 systems in Ta-
ble 6, with an overall performance greater than
70%. Out of the 1340 triples that were failed by
at least one of these top systems, we selected the
112 triples (8.3%) that were failed by all 5 sys-
tems. We called this subset the Hardest data.
These datasets were annotated by the same three
expert annotators used to compute the human up-
per bound (cf. Section 3.3). The accuracy and
F1 of the aggregated human judgments (majority
vote) with respect to the gold standard are reported
in Table 9.

The annotation results show an interesting cor-
relation between the system and human perfor-
mances. The “easy” triples for the systems are
easy for humans too, and conversely the harder a
triple is for a system the harder it is for humans.
The lowest annotation accuracy is on the Hardest
subset, less than 40%. However, since this set con-
tains the triples that were failed by all top systems,
the human accuracy also proves that theres is still
plenty of room for improvement even for the best
performing models.

Table 9 shows that the F1 on the negative class
is usually higher than the one on the positive class.
This is again similar to systems behavior. In fact,
70% of the top 100 triples scored correctly by
most systems are negative cases, while 67% of the
top 100 triples failed by most systems are positive
cases. The 112 triples failed by all top file systems
contain 54% positive cases. This suggests that for
systems and humans alike it is usually harder to

McRae manual random
label pos neg pos neg pos neg
Easy 1 9 20 7 13 0
Hard 8 2 12 26 0 2

Table 10: Example label and source distribution for
the Easy and Hard subsets of the test data.

identify a discriminative attribute, rather than a
non-discriminative one. Finally, out of the 1340
triples that were failed by at least one of the top 5
systems, 502 (37%) were failed by just one model.
This shows that a great variance exists in the be-
havior and in the weaknesses of these systems, de-
spite their very close performance.

Types of attributes seem to vary in how difficult
they are to differentiate in the context of our task.
For example, attributes that stand in the whole-part
relation with the word, as in door,gate,handle, lean
on the hard side (9 examples in the Hard sam-
ple vs. 2 in the Easy one). Attributes that are
adjectives, as in rods,wire,hard, also tend to be
hard (25 examples in the Hard sample vs. 13 in
the Easy one), presumably because of the gradi-
ent and context-dependent meaning of adjectives;
indeed, 9 of the 13 “easy” examples with adjec-
tive attributes involve colours, which are relatively
context-independent (as opposed to 4 colour out of
the 25 “hard” adjective examples).

Further analysis reveals an unequal distribution
of positive and negative examples in the Easy and
Hard subsets across different types of data, as
shown in Table 10. While overall easy examples
tend to be the positive ones and hard examples
tend to be negative, among the examples derived
from McRae feature norms the pattern is reversed.

Lastly, it is an important issue to understand the
causes of the low human performance on the Hard
and especially on the Hardest subset. By looking
at the wrongly annotated triples in this dataset, we
can identify various possible reasons. The first one
are mistakes in the gold standard annotation. For
instance, peel was marked as a discriminative at-
tribute of banana from onion, but actually peeling
is a possible action for both entities. Other cases
are instead related to the inherent vagueness of
the notion of prototypical attribute. For example,
the feature acts was marked as non-discriminative
of actress from artist, because any artist can in
principle act. Conversely, humans annotators have
identified acting as a truly specific attribute for ac-
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tress, but not for artist. The former type of prob-
lems prompt for a further revision of the gold stan-
dard, while the latter type reveals the complexity
of the notion of discriminative attribute and its dif-
ficult applications in some cases, which will re-
quire a deeper specification of annotation guide-
lines.

6 Conclusion

Discriminative attribute detection is an intuitively
simple and appealing yet challenging new task for
lexical semantic systems. For the SemEval com-
petition, we created a high quality dataset of se-
mantic differences, with estimated ceiling perfor-
mance of human annotators of 0.90. While the
task is far from being solved, participating systems
showed promising results, most of them beating
the cosine baseline.

It is clear that learning to discriminate differen-
tiating features is not trivial and requires training,
both for human annotators and for computational
systems; all of the top performing systems used
machine learning techniques of some kind.

While different teams employed different lin-
guistic resources, the results of the competition
do not allow us to conclude that a particular re-
source gives one’s system an edge. On the one
hand, exploiting information from knowledge base
resources like WordNet does improve the perfor-
mance on average. On the other hand, traditional
machine learning systems that entered our com-
petition were much more likely to make use of
knowledge bases. Therefore, combining neural
approaches with knowledge bases may very well
lead to improved performances.

As we mentioned above, ceiling performance
has already been achieved in traditional tasks such
as word similarity, causing a stagnation of lexical
semantic modeling. As the best systems in our
competition showed very promising results, we
hope to see novel semantic models demonstrate
their full potential on our task.
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