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Abstract

This paper describes the SemEval 2018 Shared
Task on Hypernym Discovery. We put for-
ward this task as a complementary benchmark
for modeling hypernymy, a problem which has
traditionally been cast as a binary classifica-
tion task, taking a pair of candidate words as
input. Instead, our reformulated task is de-
fined as follows: given an input term, retrieve
(or discover) its suitable hypernyms from a tar-
get corpus. We proposed five different sub-
tasks covering three languages (English, Span-
ish, and Italian), and two specific domains of
knowledge in English (Medical and Music).
Participants were allowed to compete in any or
all of the subtasks. Overall, a total of 11 teams
participated, with a total of 39 different sys-
tems submitted through all subtasks. Data, re-
sults and further information about the task can
be found at https://competitions.
codalab.org/competitions/17119.

1 Introduction

Hypernymy, i.e. the capability to relate generic
terms or classes to their specific instances, lies at
the core of human cognition. It is not surpris-
ing, therefore, that identifying hypernymic (is-a)
relations has been pursued in NLP for more than
two decades (Shwartz et al., 2016): indeed, suc-
cessfully identifying this lexical relation substan-
tially improves Question Answering applications
(Prager et al., 2008; Yahya et al., 2013), Textual
Entailment and Semantic Search systems (Hoffart
et al., 2014; Roller et al., 2014; Roller and Erk,
2016). In addition, hypernymic relations are the
backbone of almost every ontology, semantic net-
work and taxonomy (Yu et al., 2015), which are in
turn useful resources for downstream tasks such as

web retrieval, website navigation or records man-
agement (Bordea et al., 2015).

Generally, evaluation benchmarks for modeling
hypernymy have been designed such that in most
cases they are reduced to binary classification (Ba-
roni and Lenci, 2011; Snow et al., 2004; Boleda
et al., 2017; Vyas and Carpuat, 2017), where a
system has to decide whether a hypernymic rela-
tion holds between a given candidate pair of terms.
Criticisms to this experimental setting point out
that supervised systems tend to benefit from the
inherent modeling of the datasets in the hyper-
nym detection task, leading to lexical memoriza-
tion phenomena (Levy et al., 2015; Santus et al.,
2016a; Shwartz et al., 2017). In this respect, re-
cent work has attempted to alleviate this issue by
including a graded scale for evaluating the degree
of hypernymy on a given pair (Vulić et al., 2017).

Crucially, Espinosa-Anke et al. (2016) proposed
to frame the problem as Hypernym Discovery, i.e.
given the search space of a domain’s vocabulary,
and given an input term, discover its best (list
of) candidate hypernyms. This formulation ad-
dresses one of the main drawbacks of the evalu-
ation criterion described above, and better frames
the evaluated systems within downstream real-
world applications (Camacho-Collados, 2017). In
fact, lessons learned from these studies have mo-
tivated the construction of a full-fledged bench-
marking dataset for the shared task we present
here, which covers multiple languages and knowl-
edge domains. The main goal of this task is that
of complementing current research in hypernymy
modeling with this novel discovery setting.
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Term Hypernym(s) Source
1A: English sorrow sadness, unhappiness WordNet
1B: Italian Nina Simone musicista, pianista, persona MultiWibi
1C: Spanish guacamole salsa para mojar, salsa, alimento Wikidata (via BabelNet)

2A: Medical pulmonary embolism
pulmonary artery finding,
trunk arterial embolus,

embolism
SnomedCT

2B: Music Green Day artist, rock band, band MusicBrainz

Table 1: Some example terms and hypernyms extracted from different sources (see Section 4.1.4), for each of the
subtasks and languages considered in the task.

2 Related Work

Traditionally, identifying hypernymic relations
from text corpora has been addressed with two
main approaches: pattern-based and distributional
(Wang et al., 2017). Pattern-based (path-based)
methods, which provide higher precision at the
price of lower coverage, exploit the co-occurrence
of a hyponym and its hypernym in a textual corpus
(Hearst, 1992; Navigli and Velardi, 2010; Boella
and Di Caro, 2013; Flati et al., 2016; Gupta et al.,
2016; Pavlick and Pasca, 2017). Conversely, dis-
tributional models rely on a distributional repre-
sentation for each observed word, and are capa-
ble of identifying hypernymic relations between
concepts even when they do not co-occur explic-
itly in text. Earlier work on hypernym modeling
was unsupervised, and leveraged various interpre-
tations of the distributional hypothesis.1 Most of
the recent work on the subject is however super-
vised, and in the main based on using word em-
beddings as input for classification or prediction
(e.g Baroni et al., 2012; Santus et al., 2014; Fu
et al., 2014; Weeds et al., 2014; Espinosa-Anke
et al., 2016; Sanchez Carmona and Riedel, 2017;
Nguyen et al., 2017). As shown by Shwartz et al.
(2016), pattern-based and distributional evidences
can be effectively combined within a neural archi-
tecture. In this shared task we have actually re-
ceived systems of both natures, including a com-
bination of pattern-based and distributional cues,
similar to the one mentioned above, which also
proved to be highly effective (see Section 5).

3 Task Description

We define Hypernym Discovery operatively as the
task of finding and extracting the appropriate hy-
pernym(s) for a target input term. As input for

1See Shwartz et al. (2017) for a detailed review on unsu-
pervised distributional hypernymy detection.

the task, together with the target term,2 a large
textual corpus (source corpus henceforth) is pro-
vided, and participating systems are intended to
exploit this large source of textual data to retrieve
(i.e. “discover”) as many suitable hypernyms as
possible for the target term. A different source
corpus, as well as the corresponding vocabulary, is
specified for each subtask and language (cf. Sec-
tion 4) in order to set a level playing field for com-
peting systems, and constrain their search space.

For each input term (or hyponym) the expected
output is a ranked list of candidate hypernyms (up
to 15) drawn from the provided vocabulary. Some
example input-output pairs (i.e. terms and corre-
sponding hypernym lists) are shown in Table 1 for
each subtask and language. Table 1 also reports
the sources of hypernymy information beside each
pair, which vary depending on the subtask and lan-
guage, as detailed in Section 4.1.4.

The structure of our Hypernym Discovery task
consists of five independent but related subtasks,
split into two larger groups: general-purpose hy-
pernym discovery and domain-specific hypernym
discovery. Participants were allowed to submit
systems for any individual subtask. Along with
a specific source corpus and vocabulary, each sub-
task features its specific training and testing data,
consisting of input terms and corresponding gold
hypernym lists, obtained as described throughout
Section 4.

General-Purpose Hypernym Discovery con-
sists in discovering hypernyms in a large corpus of
general-purpose textual data, gathered from differ-
ent and heterogeneous sources. A system operat-
ing in this setting requires the flexibility to provide
hypernyms for terms in a wide range of domains.
In this shared task we consider three different lan-

2A valid input term is any word or multi-word expression
drawn from the predefined vocabulary (cf. Section 4.1.2) up
to trigrams.
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guages for general-purpose hypernym discovery:

• English (subtask 1A), with a gold standard
of 3,000 labeled terms;

• Italian (subtask 1B) and Spanish (subtask
1C), each with a gold standard of 2,000 la-
beled terms;

All the gold standards provide a balanced set of
input terms, with different degrees of frequency
and for different domains. The corresponding
gold hypernyms have been extracted from multi-
ple resources and manually validated (cf. Sections
4.1.4-4.1.5). Training and testing data are split
evenly (50% training - 50% testing).

Domain-Specific Hypernym Discovery deals
with the same problem, but constrains it to a spe-
cific domain of knowledge. As a consequence,
in this case participants test their systems (which
might be general or specifically tailored to the
target domain) in a much more focused and re-
duced environment. In this shared task we focus
on English and consider two different domains of
knowledge:

• Medical (subtask 2A), with a gold standard
of 1,000 labeled terms;

• Music (subtask 2B), also with a gold stan-
dard of 1,000 labeled terms;

As in the previous subtask, we provide a bal-
anced set of terms and gold hypernyms, with dif-
ferent degrees of frequency and for different sub-
domains. Again, training and testing data are split
evenly (50% training - 50% testing).

Subclass vs. Instance. Although many hy-
pernym detection approaches tend to overlook
this distinction, it is customary to consider
two different varieties of the “is-a” relation: a
subclass-of variety (e.g. a dog is a mam-
mal), and an instance-of variety (e.g. Rome
is a city).3 From a practical standpoint, the for-
mer occurs between two concepts, while the latter
connects a named entity with a concept. We make
this distinction explicit in our shared task by hand-
labeling each input term as either a concept or a

3In fact, WordNet encodes hypernym and instance
as two separate semantic relations. Instances are always leaf
(terminal) nodes in their hierarchies.

named entity. This strategy serves a double pur-
pose: on one hand, it helps reducing lexical am-
biguity, and narrowing the search space of poten-
tial hypernyms even further;4 on the other hand,
it enables participants to study and develop mod-
els specifically tailored to one of the two varieties,
and possibly submit them separately. In this re-
spect, Boleda et al. (2017) has indeed shown how
systems tend to perform differently on these two
kinds of hypernymy relation.

4 Task Data

In this section we present the data collection pro-
cess carried out for each source corpus and gold
standard featured in the task (Section 4.1). We
then summarize and provide some global statistics
on all these datasets (Section 4.2).

4.1 Data Collection Process
The process of collecting data for each subtask and
language comprised five successive steps: com-
pilation of the source corpus (Section 4.1.1), cre-
ation of the vocabulary (Section 4.1.2), collection
and selection of the input terms (Section 4.1.3),
extraction of the gold hypernyms (Section 4.1.4),
and final filtering and validation of such hyper-
nyms (Section 4.1.5).

4.1.1 Corpus Compilation
First, we selected and compiled a source corpus
for each dataset, which was also considered in the
vocabulary creation step (Section 4.1.2). Natu-
rally, we considered three corpora as general and
as large as possible for the general-purpose track,
whereas for the domain-specific datasets we opted
for more targeted and specific text collections.

General-purpose corpora. As source corpus
for the English subtask (1A) we used the 3-billion-
word UMBC corpus5 (Han et al., 2013), which
is a resource composed of paragraphs extracted
from the web as part of the Stanford WebBase
Project6 (Hirai et al. 2000). The UMBC cor-
pus is considerably large and contains informa-
tion from many and diverse domains. This cor-
pus presents additional challenges and different

4As an example, the term apple could either refer to a fruit
(if labeled as concept) or to a company (if labeled as named
entity).

5http://ebiquity.umbc.
edu/blogger/2013/05/01/
umbc-webbase-corpus-of-3b-english-words/

6http://dbpubs.stanford.edu:8091/
˜testbed/doc2/WebBase/
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sources of information with respect to the corpora
used in previous tasks, such as Wikipedia in the
SemEval 2016 task on taxonomy extraction (Bor-
dea et al., 2016). In fact, the encyclopedic na-
ture of Wikipedia has been exploited in a wide va-
riety of works (Ponzetto and Strube, 2007; Flati
et al., 2016; Gupta et al., 2016), and differs sub-
stantially from the web-based corpus we put for-
ward here. As source corpus for the Italian subtask
(1B) we instead used the 1.3-billion-word itWac
corpus7 (Baroni et al., 2009), extracted from dif-
ferent sources of the web within the .it domain.
Finally, as source corpus for the Spanish subtask
(1C) we considered the 1.8-billion-word Spanish
corpus8 (Cardellino, 2016), which also contains
heterogeneous documents from different sources.

Domain-specific corpora. As source corpus for
the medical domain (subtask 2A) we provided a
combination of texts drawn from the MEDLINE9

(Medical Literature Analysis and Retrieval Sys-
tem) repository, which contains academic docu-
ments such as scientific publications and paper ab-
stracts. This corpus contains 130 million words.
As regards the music domain (subtask 2B), in-
stead, the source corpus we compiled is a con-
catenation of several music-specific corpora, i.e.
music biographies from Last.fm contained in
ELMD 2.0 (Oramas et al., 2016), articles from the
music branch of Wikipedia, and a corpus of album
customer reviews from Amazon (Oramas et al.,
2017). The resulting corpus reaches 100 million
words in total.

4.1.2 Vocabulary Creation

With the aim of simplifying the task for partic-
ipants by providing a unified hypernym search
space, we built a series of vocabulary files includ-
ing all the possible hypernyms on each dataset.
Each vocabulary was constructed by considering
all the words occurring at least N times across the
source corpus of the corresponding subtask. We
set N to five and three in the general-purpose and
domain-specific subtasks, respectively. We also
included bigrams and trigrams, by considering all
the instances present in any of the resources that
we leveraged as part of the hypernym extraction

7http://wacky.sslmit.unibo.it/doku.
php?id=corpora

8http://crscardellino.me/SBWCE/
9https://www.nlm.nih.gov/databases/

download/pubmed_medline.html

process (see Section 4.1.4), provided that they also
surpassed the corresponding frequency thresholds.

In order to reduce the high granularity of some
hypernymy relations (for example, dog is an en-
tity) we created an additional blacklist of very gen-
eral terms not considered in the vocabulary files.
This list was obtained semi-automatically. We first
extracted the most common hypernyms from the
lexical sources we used for creating the datasets.
Then, we filtered the resulting blacklist by remov-
ing manually a number of suitable hypernyms that,
despite being general, provided useful information
worthy to be taken into account (e.g. animal).

4.1.3 Term Collection
After compiling a source corpus and a correspond-
ing vocabulary, we selected a suitable collection
of input terms (i.e. hyponyms) to construct the
gold standard for each subtask. Term selection
was based on three key constraints. First, as in vo-
cabulary creation step (Section 4.1.2), input terms
were required to occur five and three times in the
general-purpose and domain-specific datasets, re-
spectively. Second, only terms up to trigrams were
considered. Finally, we only allowed terms with at
least one extracted hypernym (see Section 4.1.4)
present in the corresponding vocabulary file.

We carried out the term collection process with
a semi-automatic two-pass procedure, which we
applied to the source corpus of each subtask. First,
candidate terms were extracted automatically from
the source corpus, taking into account frequency,
type (i.e. concept and entity) and knowledge do-
main10 in order to produce a list as balanced and
representative as possible. After a preliminary list
of input terms was obtained, we carried out an ex-
tensive validation and refinement step by manually
normalizing each item (e.g. changing plurals to
singulars, capitalizing named entities and lower-
casing concepts), and by pruning all the terms that
appeared too vague or general, as well as terms
with mis-attributed domains.

4.1.4 Automatic Hypernym Extraction
Once the terms were collected we proceeded
to extract a set of candidate hypernyms from a
number of heterogeneous taxonomies. We drew
taxonomic information from the following lexi-
cal resources: WordNet (Miller, 1995), Wikidata

10We leveraged the domains from the Wikipedia fea-
tured articles pages available in BabelDomains (Camacho-
Collados and Navigli, 2017).
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(Vrandečić and Krötzsch, 2014), MultiWiBi (Flati
et al., 2016), and Yago (Suchanek et al., 2007). In
order to be able to use seamlessly all hypernymy
information for languages other than English, we
exploited the inter-resource mappings provided by
BabelNet (Navigli and Ponzetto, 2012).11 For
the domain-specific datasets we additionally used
SnomedCT (Spackman et al., 1997) and Mu-
sicBrainz (Swartz, 2002) for the medical and mu-
sic datasets, respectively.

The hypernym extraction process was carried
out as follows: given a term (hyponym), we first
retrieved all the BabelNet synsets which included
the given term as lexicalization; then, starting from
that synset, we iteratively visited the father nodes
across all the reference taxonomies up to five lev-
els12 and selected all the lexicalizations of the tra-
versed synsets (i.e. concepts) as given by Ba-
belNet, provided that they appeared in the corre-
sponding vocabulary files (see Section 4.1.2).

4.1.5 Hypernym Validation
Starting from the candidate gold hypernyms ex-
tracted in the previous step, we carried out a val-
idation step using human annotators. We lever-
aged crowdsourcing for the English data in sub-
task 1A (which featured the largest dataset), and
then expert verification in all subtasks (including
English).

Crowdsourcing. We validated the English gold
standard (both training and test set) by using
crowdsourcing workers from Amazon Mechani-
cal Turk. To ensure the quality of workers, we
required workers to have answered at least 500
prior HITs with an approval rate of at least 95%,
and applied a qualification test. For each target
term, we showed the workers multiple candidate
hypernyms, extracted in the previous step (Sec-
tion 4.1.4), and asked them to select all the cor-
rect hypernyms. We also added 20% of random
false candidates to prevent bias towards a positive
answer. Finally, we assigned each HIT to 3 work-
ers and determined the gold label with majority
voting. The resulting annotations yielded an inter-
annotator agreement of 73%.

11Yago is the only resource which is not mapped to Babel-
Net. For the mapping we simply relied on the WordNet and
Wikipedia identifiers provided in Yago.

12We decided to consider only five levels for two reasons:
first, to avoid very general hypernyms; and second, to avoid
errors which would propagate to other levels and make the
validation task much harder. To this aim, five levels seemed
to provide a fine balance between precision and recall.

1A 1B 1C 2A 2B
Trial 50 25 25 15 15
Training 1,500 1,000 1,000 500 500
Test 1,500 1,000 1,000 500 500

Table 2: Number of terms (hyponyms) for each dataset
in trial, training and test sets.

Expert verification. Expert verification com-
prised two steps. First, all the extracted data was
verified by an expert human annotator. In this first
step, the annotator was focused on removing the
incorrect hypernyms, or normalizing them if re-
quired (e.g. plural to singular). This first verifica-
tion was performed in all dataset except English,
which underwent the crowsourcing validation ex-
plained earlier. Then, all datasets (including the
English one) were again verified by other experts.
However, in this case the annotators were given
different guidelines: in particular, they were asked
to fix clear hypernym errors (which may have been
missed in the previous step) and to add obvious
hypernyms which they found to be missing.

4.2 Statistics

Table 2 shows the number of input terms in each
dataset. The dataset was split equally in training
and testing, while the trial data provided a fewer
examples and could also be used as development
set. English (subtask 1A) was the largest dataset
with 1,500 terms (hyponyms) and for training and
other 1,500 for testing. Then, for the Italian (sub-
task 1B) and Spanish (subtask 1C) datasets, 2,000
terms were given overall between training and
testing. Finally, both domain-specific datasets (i.e.
medical, subtask 2A, and music, subtask 2B) con-
tained half of this quantity, with 1,000 terms each.

Note that each term may be associated with
one or (in most cases) more than one hypernym.
Therefore, counting all the term-hypernym pairs
per dataset, as it is done in hypernymy detection
datasets, would provide much larger figures. As
an example, the number of term-hypernym pairs in
the test gold standard is 7,048 for English, 4,770
for Italian, 6,070 for Spanish, 4,116 for the medi-
cal dataset, and 5,233 for the music dataset.

5 Evaluation

Parting ways from the classic precision-recall-
F1 metrics used so far in hypernym detec-
tion/extraction, we decided to evaluate this shared
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task as a soft ranking problem. Systems were
evaluated over the top 15 (at most) hypernyms re-
trieved for each input term, which let us assess
their performance through Information Retrieval
metrics. Let us briefly introduce each of them.

Mean Average Precision (MAP). We use MAP
as the main evaluation metric of this task. In-
tuitively, this metric should give a fine estimate
on the capability of a system to retrieve a sizable
number of hypernyms from textual data, as well
as considering the precision of each of them. For-
mally:

MAP =
1

|Q|
∑

q∈Q
AP(q)

where Q is a sample of experiment runs, AP(·)
refers to average precision, i.e. an average of the
correctness of each individual obtained hypernym
from the search space.

Mean Reciprocal Rank (MRR). MRR rewards
the position of the first correct result in a ranked
list of outcomes, and is defined as:

MRR =
1

|Q|

|Q|∑

i=1

1

ranki

where ranki refers to the rank position of the
first relevant outcome for the ith run. While its
main field of application is Information Retrieval,
it has also been used in NLP tasks such as col-
location recognition (Wu et al., 2010; Rodrı́guez-
Fernández et al., 2016).

In addition to the above, we also provide results
according to P@k, i.e. the number of correctly re-
trieved hypernyms at different cut-off thresholds,
specifically k ∈ {1, 3, 5, 15}.13

5.1 Baselines

We compared the participating systems with both
supervised and unsupervised baselines for each
subtask, inspired by recent work on hypernym de-
tection and discovery. In this section we briefly
describe each of them.

5.1.1 Supervised Baselines
We first used a naı̈ve most frequent hypernym
(MFH) baseline, which simply returns, for each
input term, the 15 most frequent hypernyms found

13Although only P@5 is displayed in the tables due to lack
of space, the other thresholds were used in the official evalu-
ation as well.

in the training data. As a less naı̈ve baseline,
we also trained a transformation matrix (Mikolov
et al., 2013; Fu et al., 2014), using the same
optimization described by Espinosa-Anke et al.
(2016). For this baseline the hypernyms in the vo-
cabulary which are among the fifteen closest vec-
tors by applying the transformation matrix are re-
trieved. However, unlike in the original implemen-
tation, in this case we did not perform any a priori
domain clustering of the embeddings space, and
thus used the same matrix for all input terms.14

This second supervised baseline is referred to as
vTE (vanilla Taxoembed).

5.1.2 Unsupervised Baselines
We developed an unsupervised baseline by reduc-
ing hypernymy discovery to hypernymy detection.
We generated a list of candidate hypernyms for
each target word, and then employed unsupervised
hypernymy detection measures to decide whether
a hypernymy relation holds. We used the open-
source code by Shwartz et al. (2017).15

Our baseline starts by creating a distributional
semantic model (DSM) for each domain/language
(English, Spanish, Italian, Music and Medical).
We used a non-directional window of size 5 as
context type, and PPMI as feature weighting.
Similarly to the hyponym selection step (Section
4.1.3), all the terms with frequency of at least 3
occurrences in the source corpus are considered
as valid targets. For the context words, instead,
we required a minimum of 100 occurrences, as in
Shwartz et al. (2017). To generate candidates, we
took the 50 most similar terms for each target word
via cosine similarity in the DSM.

We chose the hypernym detection measures as
representative algorithms from each “family” of
unsupervised measures: APSyn (Santus et al.,
2016b) as similarity measure, balAPInc (Kotler-
man et al., 2010) as measure based on the dis-
tributional inclusion hypothesis, and SLQS (San-
tus et al., 2014) as measure based on informative-
ness.16 Finally, we tuned the thresholds for the
above measures by maximizing the average of the
performance metrics on the training set, separately
for each subtask and measure.

14We used the open-source code available at https://
bitbucket.org/luisespinosa/taxoembed

15https://github.com/vered1986/
UnsupervisedHypernymy

16Following the conclusions from Shwartz et al. (2017), we
set the hyper-parameters to: SLQS: median, PLMI, N = 100
and APSyn: N = 500.
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5.2 Participant Systems

Table 3 shows a summary of all participant sys-
tems, displaying their main features with respect
to supervison and external resources used, if any.

5.3 Results

A summary of the results is provided in tables 3
to 7, respectively describing results for English,
Italian, Spanish and Music and Medical domains.
Almost all systems performed better than the un-
supervised baselines, while the supervised ones
showed to be more challenging, with few sys-
tems outperforming them. For English, Music
and Medical domains, CRIM (Bernier-Colborne
and Barriere, 2018) obtained the best results, with
a large margin on the other systems and base-
lines. This system is based on learning a projec-
tion between hyponym-hypernym pairs in terms
of their corresponding embeddings, and combines
this module with an unsupervised system which
uses Hearst-style patterns. Moreover, in Ital-
ian, the best system was 300-sparsans r1 (Berend
et al., 2018), a logistic regression model informed
mostly with information coming from word em-
beddings; whereas for Spanish, the best perform-
ing team was NLP HZ (Qiu et al., 2018), who ap-
proached the task with a nearest neighbors algo-
rithm trained with the provided training data.

From the summary tables we can also appreci-
ate the difference in performance of the systems
on concepts and entities. Such difference is due
to several factors, including the quantity and type
of hypernyms that needed to be identified for the
two subclasses. Except for the Music domain, sys-
tems tended to perform better with entities than
with concepts. This is probably due to the fact that
entities contain many hypernyms which appear of-
ten (e.g. person, company), which in principle fa-
vor the inherent lexical memorization (Levy et al.,
2015) of supervised systems. Hence, as expected,
systems performed better in the specialized do-
mains (i.e. medical and music) than in the general-
domain dataset (34.05% and 40.97% MAP perfor-
mance by the best systems in the medical and mu-
sic domains, respectively, compared to the 19.78%
result of the best system in the English dataset).

Finally, the results also show the clear supe-
riority of supervised systems over unsupervised
approaches in all languages and domains. As
far as fully unsupervised systems are concerned,
they achieved a diverse degree of success. While

in general they were outperformed by supervised
systems, in some cases their performance came
close, especially for concepts. For instance, the
ADAPT (Maldonado and Klubika, 2018) system,
which is based on a simple similarity measure ap-
plied to word embeddings, achieved a very de-
cent 8.13 MAP percentage performance on the
medical dataset, using neither supervision nor ex-
ternal resources. Supervised systems produced a
larger gap for entities, probably due, as mentioned
above, to the lower diversity of possible hyper-
nyms.

Cross-evaluation. In addition to the normal set-
ting on which supervised systems trained their sys-
tem on the same dataset training data, we ask par-
ticipants to train systems on the English general-
purpose data and trained on the domain-specific
datasets. This experiment could enable us to test
how a system could perform on a particular dataset
when training data is not available. A few teams
provided results on this setting and the results
showed that even though trained on general data,
they are still competitive with respect to other ap-
proaches. In fact, they tend to equally outperform
unsupervised systems and in the medical dataset,
for example, CRIM trained on the general En-
glish corpora outperformed all remaining partic-
ipant systems trained on the medical training data.

6 Analysis

Inspired by previous tasks in taxonomy learning
(Bordea et al., 2015), we sampled for each system
50 incorrect hypernyms (25 entities, 25 concepts)
which were retrieved as first choice, and manu-
ally assessed their correctness. This evaluation of
false positives is intended to account for the in-
evitable scenario in which not all possible correct
hypernyms according to human judgement were
included in the gold standard. The results in false
positives were measured by accuracy (i.e. percent-
age of correct false positives on the given sample)
and are displayed in Tables 4-8 under FPs.

In general, we observe that the systems’ per-
formances in this false positives experiment are
correlated with the figures they obtained with the
other automatic evaluation measures. Nonethe-
less, according to this false positives evaluation,
most systems (both supervised and unsupervised)
were able to retrieve some hypernyms which were
not present in the gold standard. This result is en-
couraging, as not only hypernym discovery sys-
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Team Name Reference Supervision External Resources

Systems

CRIM (Bernier-Colborne and Barriere, 2018) X -
MSCG-SANITY - X Microsoft Concept Graph
NLP HZ (Qiu et al., 2018) X -
300-sparsans (Berend et al., 2018) X -
SJTU BCMI (Zhang et al., 2018) X -
UMDuluth (Hassan et al., 2018) X -
ADAPT (Maldonado and Klubika, 2018) -
Apollo (Onofrei et al., 2018) -
EXPR (Issa Alaa Aldine et al., 2018) -
Team 13 - -
Anu - WordNet

Baselines

vanillaTaxoEmbed (Espinosa-Anke et al., 2016) X -
MFH - X -
APSyn (Shwartz et al., 2017) -
balAPInc (Shwartz et al., 2017) -
SLQS (Shwartz et al., 2017) -

Table 3: Summary of participating systems and baselines, along with their main features (i.e. with or without
supervision, and usage of external resources).

1A: English
Concepts Entities All

MAP MRR P@5 FPs MAP MRR P@5 FPs MAP MRR P@5 FPs
CRIM r1 16.08 30.04 15.41 20 29.21 51.82 27.74 24 19.78 36.10 19.03 22
CRIM r2 15.49 29.29 14.97 24 28.63 50.55 27.65 20 19.54 35.94 18.74 22
MSCG-SANITY r1 9.36 18.9 9.38 28 17.72 38.85 16.91 20 11.83 24.79 11.60 24
vTE* 6.99 16.05 6.55 36 19.22 42.39 17.92 12 10.60 23.83 9.91 24
MSCG-SANITY r2 8.66 17.24 8.76 24 12.49 28.20 12.09 40 9.80 20.48 9.74 32
NLP HZ 7.17 13.13 7.11 24 14.61 27.21 14.14 20 9.37 17.29 9.19 22
300-sparsans r1 6.41 13.92 6.33 24 15.02 32.61 14.10 16 8.95 19.44 8.63 20
MFH* 4.73 12.48 4.13 0 18.42 42.65 16.59 16 8.77 21.39 7.81 8
300-sparsans r2 5.97 12.72 5.73 20 14.78 30.62 14.21 20 8.58 18.00 8.23 20
SJTU BCMI 3.29 5.68 3.57 0 11.70 22.19 11.67 12 5.77 10.56 5.96 6
Team 13 3.70 7.92 3.66 12 0.52 1.65 0.46 20 2.77 6.07 2.72 16
Apollo r2 2.72 6.05 2.76 16 2.60 5.91 2.51 20 2.68 6.01 2.69 18
Apollo r1 1.36 3.28 1.34 16 1.48 4.05 1.31 16 1.40 3.51 1.33 16
APSyn* 1.73 3.69 1.74 16 0.55 1.41 0.55 4 1.38 3.02 1.39 10
balAPInc* 1.73 3.87 1.67 8 0.47 1.53 0.44 4 1.36 3.18 1.30 6
SLQS* 0.70 1.68 0.73 4 0.37 0.92 0.33 4 0.60 1.46 0.61 4
UMDuluth C 8.13 18.93 7.53 20 - - - - - - - -
EXPR C 4.94 11.64 4.52 16 - - - - - - - -
UMDuluth E - - - - 3.79 9.99 3.66 28 - - - -

Table 4: Results for the English subtask (1A). Baselines are marked with *, and those system participating only on
Concepts or Entities are shown at the bottom and marked with either ‘C’ or ‘E’.

tems can be used to speed up the hypernym dis-
covery process, but they can also provide new hy-
pernyms not considered beforehand.

Unsupervised distributional methods (e.g. the
unsupervised baselines) seemed to perform poorly
overall, as these systems tended to retrieve sim-
ilar words which are not necessarily hypernyms.
For example, false positives for APSyn and bal-
APInc are characterized by a large number of co-
hyponyms (e.g. Exodus and Genesis) and syntag-

matically related words (e.g. orange and juice).
As regards the top performing systems, it is

worth noting that they often tended to retrieve
correct or near-correct hypernyms. The hyper-
nyms that were retrieved on the gold standard
were of several kinds: first, some hypernyms
were present in the gold standard but normalized
differently (for example, for About.com the gold
standard contained website but not web site re-
trieved by CRIM r1); second, they retrieved hy-
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1B: Italian
Concepts Entities All

MAP MRR P@5 FPs MAP MRR P@5 FPs MAP MRR P@5 FPs
300-sparsans r1 8.94 18.77 8.71 12 22.56 46.34 21.79 16 12.08 25.14 11.73 14
NLP HZ 9.28 15.23 9.12 12 18.32 32.37 18.26 28 11.37 19.19 11.23 20
300-sparsans r2 7.32 16.02 7.31 16 16.18 36.12 16.02 12 9.36 19.94 9.32 14
MFH* 5.07 13.30 4.31 0 16.71 39.56 15.18 8 7.76 19.37 6.82 4
vTE* 4.85 11.09 4.62 12 13.74 33.08 12.63 16 6.91 16.17 6.47 14
balAPInc* 4.84 10.71 4.84 16 0.72 1.96 0.77 4 3.89 8.69 3.90 10
APSyn* 4.30 9.50 4.33 12 1.00 2.06 1.00 4 3.54 7.56 3.56 8
SLQS* 2.02 4.02 2.07 4 0.26 0.75 0.17 0 1.62 3.26 1.63 2
Team 13 0.62 1.69 0.57 8 0.13 0.27 0.17 8 0.51 1.36 0.48 8

Table 5: Results for the Italian subtask (1B). Baselines are marked with *.

1C: Spanish
Concepts Entities All

MAP MRR P@5 FPs MAP MRR P@5 FPs MAP MRR P@5 FPs
NLP HZ 18.17 25.17 18.71 12 23.19 33.48 23.21 24 20.04 28.27 20.39 18
300-sparsans r1 13.21 28.07 12.80 8 25.91 53.51 24.24 4 17.94 37.56 17.06 6
300-sparsans r2 11.10 22.90 11.07 20 14.92 30.87 15.14 12 12.52 25.87 12.59 16
MFH* 8.33 17.19 8.51 0 18.58 50.89 15.88 8 12.16 29.76 11.26 4
vTE* 6.08 14.32 6.01 12 8.84 20.96 9.10 4 7.11 16.80 7.16 8
balAPInc* 3.52 7.99 3.62 0 0.59 1.39 0.55 0 2.43 5.53 2.48 0
APSyn* 3.28 6.76 3.29 8 0.74 1.71 0.79 0 2.33 4.88 2.35 4
Team 13 2.57 6.08 2.06 12 0.06 0.13 0.05 4 1.63 4.31 1.65 8
SLQS* 1.21 2.27 1.14 0 0.37 0.89 0.32 0 0.90 1.75 0.83 0

Table 6: Results for the Spanish subtask (1C). Baselines are marked with *.

2B: Music
Concepts Entities All

MAP MRR P@5 FPs MAP MRR P@5 FPs MAP MRR P@5 FPs
CRIM r1 43.38 63.79 43.87 24 38.42 55.54 38.76 12 40.97 60.93 41.31 16
CRIM r2 41.98 63.07 42.32 20 34.59 51.08 35.80 8 40.88 60.18 41.58 16
MFH* 33.56 56.82 35.22 0 32.72 38.03 37.11 0 33.32 51.48 35.76 0
300-sparsans r1 23.52 39.26 22.66 16 44.71 64.53 44.48 20 29.54 46.43 28.86 18
CRIM CE 24.62 42.92 25.46 8 11.93 24.03 12.24 16 21.20 37.55 21.70 12
300-sparsans r2 12.49 27.33 12.79 20 35.72 60.35 38.63 4 19.08 36.71 20.13 12
vTE* 11.53 35.78 10.28 12 16.67 48.39 17.77 20 12.99 39.36 12.41 16
Anu 10.68 27.13 10.84 32 3.43 7.19 3.90 8 8.62 21.47 8.87 20
vTE* CE 6.31 16.54 6.81 4 13.37 33.58 14.87 4 3.51 9.79 3.62 4
SJTU BCMI 5.16 9.84 5.41 4 6.30 11.57 6.67 4 4.71 9.15 4.91 4
Team 13 4.83 14.33 4.51 12 2.82 7.92 3 8 5.62 16.87 5.11 16
ADAPT 1.88 5.34 1.89 2 0.00 0.00 0.00 0 2.63 7.46 2.64 4
balAPInc* 1.44 3.65 1.58 4 0.15 0.23 0.14 0 1.95 5.01 2.15 2
APSyn* 1.13 2.55 1.30 8 0.15 0.23 0.18 4 1.51 3.47 1.74 6
SLQS* 0.64 1.25 0.65 0 0.11 0.14 0 0.86 1.69 0.85 0

Table 7: Results for the Music subtask (2B). Baselines are marked with *.

pernyms which were either more or less fine-
grained than the gold standard hypernyms (e.g.
the list of gold hypernyms for downfall includes
natural phenomenon but not storm, discovered by
some supervised systems); third, some systems

were able to retrieve hypernyms which correspond
to another hyponym’s sense not captured in the
gold standard (e.g. facultad in Spanish can be ei-
ther an educational institution or a virtue/ability,
the latter not being captured by the gold standard

720



2A: Medical
MAP MRR P@5 FPs

CRIM r1 34.05 54.64 36.77 20
CRIM r2 31.54 46.19 35.49 12
MFH* 28.93 35.80 34.20 4
CRIM CE 27.18 49.51 29.10 12
300-sparsans r1 20.75 40.60 21.43 16
vTE* 18.84 41.07 20.71 12
300-sparsans r2 14.96 32.18 15.81 12
EXPR C 13.77 40.76 12.76 40
SJTU BCMI 11.69 25.95 11.69 12
vTE* CE 11.66 23.83 12.64 32
ADAPT 8.13 20.56 8.32 20
Anu 7.05 17.51 7.29 32
Team 13 2.55 7.19 2.52 8
EXPR C CE 1.36 3.70 1.42 12
balAPInc* 0.91 2.10 1.08 0
APSyn* 0.65 1.43 0.72 4
SLQS* 0.29 0.66 0.33 0

Table 8: Results for the Medical subtask (2A). Base-
lines are marked with * and cross evaluation systems
are followed by ‘ CE’.

but retrieved by the 300-sparsans r2 system). Per-
haps surprisingly, this latter case also extends to
baselines such as MFH: in fact, many named enti-
ties have very skewed sense distributions, with less
popular senses corresponding to people, cities, or
companies often unbeknownst to most human an-
notators.17 In addition to these three common pat-
terns, there are also other correct false positives
which do not clearly correspond to any of these
three.

7 Conclusion

In this paper we have presented the SemEval 2018
task on Hypernym Discovery. We provided a
large, reliable framework to evaluate hypernym
discovery system in various languages (English,
Italian, and Spanish) and domains (medical and
music). This evaluation framework aims at going
beyond the common practice of seeing hypernymy
detection as a binary classification task, and pro-
vides a more challenging setting, inherently closer
to how the task should be modeled within down-
stream applications. We hope this framework will
contribute to the development of hypernym dis-
covery systems in several languages and, more

17As an example, Cervantes is universally known as the
famous Spanish writer who authored ‘Don Quixote’, but the
word might also refer to a town in Western Australia.

generally, to a wider understanding of hypernymy
from a computational perspective.

As far as the results are concerned, this newly-
proposed task proved to be challenging for all par-
ticipating systems, leaving considerable room for
improvement. It is clear from the figures that su-
pervised systems perform considerably better than
unsupervised systems. This might suggests that,
given a well-defined downstream task, it could be
more valuable to annotate hypernyms manually or
semi-automatically (whenever possible) and then
train a supervised system, than proposing unsuper-
vised solutions with suboptimal performances. On
the other hand, it is also noteworthy that the best
system across three of the subtasks (i.e. CRIM)
combined a supervised neural network architec-
ture with the output of an unsupervised system us-
ing Hearst-style patterns (Hearst, 1992).
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