
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 660–666
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

NewsReader at SemEval-2018 Task 5: Counting events by reasoning over
event-centric-knowledge-graphs

Piek Vossen
VU University Amsterdam / De Boelelaan 1105, 1081HV Amsterdam, Netherlands

piek.vossen@vu.nl

Abstract

In this paper, we describe the participation
of the NewsReader system in the SemEval-
2018 Task 5 on Counting Events and Par-
ticipants in the Long Tail. NewsReader is
a generic unsupervised text processing sys-
tem that detects events with participants, time
and place to generate Event Centric Knowl-
edge Graphs (ECKGs). We minimally adapted
these ECKGs to establish a baseline perfor-
mance for the task. We first use the ECKGs to
establish which documents report on the same
incident and what event mentions are coref-
erential. Next, we aggregate ECKGs across
coreferential mentions and use the aggregated
knowledge to answer the questions of the task.
Our participation tests the quality of News-
Reader to create ECKGs, as well as the po-
tential of ECKGs to establish event identity
and reason over the result to answer the task
queries.

1 Introduction

This paper describes the NewsReader system par-
ticipating in the SemEval 2018 Task 5 Counting
Events and Participants in the Long Tail (Postma
et al., 2018). Task 5 requires detection of certain
events (cases of gun violence, dismissal of em-
ployees, and burning fire incidents) with partici-
pants, as well as extraction of their location and
time in a set of documents and reasoning over their
identity, in order to answer queries over the data
set. A typical query in the task is How many peo-
ple were killed in 2016 in Columbus, MS?. Partic-
ipants were given a collection of news articles in
CoNLL format to distill the answer to the queries.
The task consists of 3 subtasks: subtask 1 asks for
all documents from the data set that report on a sin-
gle incident that fits the question constraints; sub-
task 2 is to provide the number of incidents (zero
or more) and the documents that report on these

incidents given the constraints of a query; subtask
3 asks for the number of affected (injured, dead,
or fired) people in the incidents that match the
query constraints, and the supporting documents
for these incidents. In addition to answering the
subtask queries, participants were asked to mark
the (cross-document) coreferential event mentions
in the CoNLL file according to a specific event
schema for gun violence.

Since we also organized the task, we decided
to participate out-of-competition. Our system is a
version of the NewsReader system (Vossen et al.,
2016) as it was delivered at the end of the project,
with as little adaptation as possible to the pro-
cessing of the text to answer the queries of the
task. The generic NewsReader system created the
semantic output by applying a deep reading ap-
proach to the text, and the tasks were addressed by
loading that output and reasoning over the results.

We participated in all three subtasks by first re-
solving the event coreference (or identity) and next
answering the questions for each task using event
representations that are the results of resolving the
coreference. Our approach consists of three steps:
1. the event mentions in the input documents are
represented as Event-Centric Knowledge Graphs
(ECKGs) using the NewsReader system as is. 2.
the ECKGs of all documents are compared to
each other to decide which documents refer to the
same incident, resulting in an incident-document
index and in cross-document event-coreference re-
lations. 3. the constraints of each question (its
event type, time, participant names, and location)
are matched with the stored ECKGs, resulting in
a number of incidents and source documents for
each question.

Our approach is fully unsupervised and follows
compositional semantic principles to 1) define the
semantics of events and participants, 2) estab-
lish their identity, and 3) reason over the results.

660



The remainder of this paper is structured as fol-
lows. In Section 2, we briefly describe the News-
Reader system and the preprocessing steps. In
Section 3, we explain how we establish event iden-
tity and cross-document coreference starting from
the NewsReader output. The aggregated event
representations are used to answer the queries for
the tasks, which we describe in Section 4.

Finally in Section 5, we discuss the results.
For further details on the NewsReader system, we
point to the NewsReader website and its Github
repository.1 The specific wrapper for this task that
takes the Newsreader output as a starting point is
available in a separate Github.2

2 The NewsReader system

NewsReader processes text by applying a wide
range of NLP modules, among which named en-
tity recognition, classification and disambiguation
(NERCD), semantic role labeling (SRL), word
sense disambiguation (WSD), and temporal ex-
pressions detection and normalization (TIMEX).
The NLP modules store their output as separate
layers in the Natural language processing Anno-
tation Format (NAF) (Fokkens et al., 2014). For
example, events are detected by the SRL system
as PropBank predicates (Kingsbury and Palmer,
2002), while FrameNet frames (Baker, 2008) and
Wordnet synsets (Fellbaum, 1998) are attached to
these predicates on the basis of the WSD output.
Similarly, NERCD will annotate the text with en-
tities and entity classes and it will annotate some
of them with DBpedia URIs. From these entities,
we derive participant names and locations for the
predicates in the SRL output, while TIMEX an-
chors these predicates to dates.

In a second step, NewsReader derives so-called
Event-Centric-Knowledge-Graphs (ECKGs) by
combining the results of the NLP module. The
ECKGs follow the Simple Event Model (SEM)
(Van Hage et al., 2011), which represents events
as instances through URIs with relations to their
participants, location, and time. The same event
instance and participants can be mentioned sev-
eral times throughout a text and across different
documents. Identity across mentions is then mod-
eled through the Grounded Annotation Frame-
work (GAF) (Fokkens et al., 2013), by giving

1www.newsreader-project.eu and https://
github.com/newsreader

2https://github.com/cltl/
nwr-semeval2018-5

event instances the same unique URI in SEM and
pointing to the different mentions in the source
text via a denotedBy relation to mention URIs
based on their offsets. Assigning unique URIs
to coreferential event mentions results in ECKGs
with all the knowledge and information aggre-
gated across mentions in the form of RDF prop-
erties for this subject URI.

Figure 1 shows two examples
of ECKGs with the event URIs
094fe5921b642e30a00cd52ece7b0157#ev1
and 60ad5103290ae7aa16e39d3cd2695496#ev1.
The ECKGs are derived from two mentions in two
different documents. The triple representations
capture the following properties for each event:
subclass relations with WordNet synsets and
FrameNet frames, denotedBy pointers to the offset
positions in the original texts, the words or labels
used to mention the event, PropBank roles filled
by DBpedia URIs, or unresolved phrases that
are not entities and finally, the date to which the
events are anchored.

In this output of NewsReader, we did not apply
any event coreference and we represent each men-
tion as a separate event instance or ECKG. The
WordNet synsets and FrameNet frames are asso-
ciated through the WSD modules in NewsReader.
We used the UKB (Agirre and Soroa, 2009) and
IMS ((Zhong and Ng, 2010) to score the Word-
Net synsets for each predicate. Next, we take the
highest scoring synsets and use the Predicate Ma-
trix (Carreras et al., 2014) to obtain the associated
FrameNet frames. The interpretation of the predi-
cates as events for the task is thus derived from the
SRL output in combination with the WSD output
and the Predicate Matrix association.

We call the above output of NewsReader the
raw-ECKGs. In the next sections, we describe
how we post-process these to derive so-called
task-ECKGs with only the information relevant
for the task. We finally reason over these task-
ECKGs to answer the queries. Both the raw-
ECKGS and the task-ECKGs are available in the
Github repository, including the scripts to extract
the latter from the former.

3 Event coreference

As a first step for the task, we read the raw-ECKGs
and filter out only those events that are relevant
for the task: see section 3.2 for details. Next, we
establish event identity across the different event

661



094fe5921b642e30a00cd52ece7b0157#ev1
a wn:eng-30-00069879-v , wn:eng-00069879-v ,

fn:Cause_harm , fn:Experience_bodily_harm ;
gaf:denotedBy 094fe5921b642e30a00cd52ece7b0157#char=11,18;
skos:prefLabel "injure" ;
pb:A1 dbpedia:East_Palo_Alto,_California ;
time:inDateTime date:20130505 .

60ad5103290ae7aa16e39d3cd2695496#ev1
a wn:eng-30-00069879-v , wn:eng-30-07950786-n ,

wn:eng-02738701-v , wn:eng-01882814-v ,
fn:Cause_harm , fn:Path_shape , fn:Travel ;

gaf:denotedBy 60ad5103290ae7aa16e39d3cd2695496#char=9,16;
skos:prefLabel "wound" ;
pb:A1 semeval2018-5:non-entities/person ;
pb:A2 dbpedia:East_Palo_Alto,_California ;
time:inDateTime date:20130505 .

Figure 1: ECKG representation of events extracted by NewsReader for two different mentions in two different
documents, showing the type of event, the mentions linked through the denotedBy property, the PropBank roles,
the date and the actual words used to make reference. The denotedBy links are simplified to reduce space.

mentions: see subsections 3.3 and 3.4. For this,
we assume that each document reports on a sin-
gle incident and mentions within a document are
coreferential. We carried out the following steps
for this:

1. We build an index of all documents that re-
port on the same incident as follows:

(a) We determine the incident time for a
document.

(b) We determine the overall incident type
for a document: killing, injuring, job fir-
ing, or fire burning.

(c) We compare all documents with the
same incident time and incident type to
further match the locations and partici-
pants.

(d) If there are sufficient matching locations
and participants across documents, we
store them relative to the same incident.

2. Iterating over the incident-document index,
we determine the mentions of incidents and
their subevents over all documents that report
on the same incident. We establish corefer-
ence relations among these mentions:

(a) All mentions of the incident as a whole,
e.g. accident, shooting, this, receive the
same URI that represents the incident.

(b) All further subevents of an incident (hit,
injure, death) are identified by their
subevent type and the victims associated
within and across documents related to

the same incident. Incident subevents of
the same type and with the same vic-
tims become coreferential and receive
the same URI.

In the next subsections, we explain these steps
in more detail.

3.1 Incident time
The document-creation-time is given by the or-
ganizers for each document but it does not nec-
essarily correspond with the date of the inci-
dent. We therefore extract the mostly mentioned
year and month throughout the document and se-
lect the most frequently mentioned date for that
year/month. We experimented with selecting dif-
ferent proportions of the text, as we assumed that
the actual incident data is most likely mentioned
in the beginning and other incidents from the past
may be mentioned later in the text. We tested
these approaches on the trial data and found that
restricting the date references to the first two sen-
tences gave the best results. If there are no time
expressions in the first two sentences, we use the
document-creation-time as the incident date as a
fall-back.3

3.2 Incident type
For each document, we classify all the predicates
for the event types of the task: shooting, burning,
and dismissal of employees and count which type
is most dominant. To classify the predicates, we

3We also experimented with other granularities e.g. by
lumping incidents by the week of the month but these did not
give better results.

662



collected all FrameNet frames that NewsReader
assigned to the trial data and ordered the frames
by frequency. We manually selected the following
frames for each event type:

incident fn:Attack,fn:Catastrophe,fn:Cause harm,
fn:Destroying

kill fn:Cause to end,fn:Death,fn:Killing

injured fn:Cause harm,fn:Cause impact,
fn:Experience bodily harm,
fn:Hit target,fn:Recovery,fn:Resurrection

hit fn:Cause impact,fn:Hit target

shoot fn:Shoot projectiles,fn:Use firearm

burn fn:Absorb heat,fn:Apply heat,
fn:Setting fire,fn:Fire burning,fn:Fire going out

dismiss fn:Firing,fn:Quitting a place,
fn:Quitting,fn:Get a job,fn:Hiring,fn:Employing,
fn:Being employed

We further noticed that some task-relevant
words in the trial data were not matched with
WordNet synsets or FrameNet frames by our sys-
tem. After analysing the output of the trial data,
we manually selected 84 predicates that were
sometimes missed by the system (due to upper
case, part-of-speech errors, out-of-vocabulary) to
ensure higher coverage. We used this word list to-
gether with the FrameNet mappings to select only
those events that are relevant for the tasks and de-
rive the dominant event type of the document.

3.3 Incident-document index

After determining the dominant date and the type
of incident, we compare documents with the same
incident date and the same incident type to de-
termine which documents report on the same in-
cident. For this we compare the locations and
the participants. If there is a sufficient degree of
matching, we assume that documents report on the
same incident.4 For participants, we first check
the names of the entities detected by the NERC
module. If there was no match, we check all other
phrases with PropBank A0 or A1 role, such as per-
son, child, girl that denote persons, but are not
classified as entities by NERC.5 For locations, we
assume that the entity linking software6 found a

4In our experiments, matching a single participant and a
single location was sufficient.

5In NewsReader, these phrases are typed as non-entities
because they can refer to generic or role instantiations, e.g.
victim, mother

6mendes2011dbpedia

match to DBpedia. We directly compare the DB-
pedia URIs for locations across the documents to
find a match. Eventually when documents match
in terms of all properties: same incident date, same
incident type, one participant and one location, we
assume they report on the same incident and we
store them together in an incident-document in-
dex.

3.4 Coreference across incident mentions

The second step in this process establishes the
event coreference relations across all event men-
tions in all the documents related to the same
incident. All references to the incident as a whole
will receive a unique URI that identifies that
incident. For example, if a document has shooting
as the dominant incident type, then we consider
all references to shooting as a mention of the
incident as a whole. We consider abstract incident
mentions such as catastrophe, accident, and even
pronouns such as it and this, as coreferential
with the incident as a whole. Next, we extract
all references to subevents, e.g. hit, injured,
death as separate event instances relative to the
incident to which they are associated. Subevents
are separated by their subtype in combination
with the participants or victims. Each subevent
receives a URI that is composed of the incident
URI, the subevent type, and the participant string.
An example of such a subevent URI is shown in
Figure 2. It starts with a document reference7

followed by #incident, #INJURED and the words
that make up all linked participant phrases:
6-year+old+girl+child+little+girl+person
+young+girl. These participant phrases are
aggregated across various mentions. In the case
of phrases such as this one, it is difficult to
reason over the participant identity; how many
participants are injured? In this approach, we
assume that the URI and therefore their iden-
tity was resolved by the generic processing of
NewsReader. No specific matching strategy
was implemented to establish coreference across
participants. We see in Figure 2 the resulting list
of distinct participant URIs based on their surface
forms. In case of entity names, it is more likely
to match participants across mentions directly
through their URIs or their first name or surname.
For example in Figure 2, the second ECKG shows

7We arbitrarily take the name of the first document used
in comparison just to get a unique URI

663



an incident reference with the participant name
Tewalt that needs to match a participant in another
document with the same name to find a match.

3.5 Aggregating properties

Establishing coreference through the same URI,
results in further aggregation of all properties that
were initially expressed for separate event men-
tions. We also normalised the properties by lump-
ing all PropBank A0 and A1 roles to sem:hasActor
for participants and sem:hasPlace for location.
Figure 2 shows two examples of task-ECKG
resulting after aggregating data from mentions
from the raw-ECKGs. The first ECKG shows a
subevent of the type INJURED based on the raw-
ECKGs shown in Figure 1. The second ECKG
shows an event at the incident level, aggregated
over various mentions in the same document and
their corresponding properties. We also include
all subevents for the incident as links. There are
subevents both for being injured and for death al-
though the participants detected are linked only to
injured subevents. This has consequences for an-
swering subtask 3 questions for number of people
injured or died.

After aggregating the properties, we store
these task-ECKGs to an output file named after
the incident date inside a subfolder that corre-
sponds with each incident event type: (BURN,
DISMISS and SHOOT). For example for the
test data, the software created a BURN sub-
folder with 6 ECKGs files in TRiG-RDF format:
20071026.trig, 20071022.trig, 20151027.trig,
20151024.trig, 20070207.trig, 20070201.trig,
each representing the incident date. Each of these
TRiG files contains all incidents of the same
type that are associated with the same date. For
SHOOT and DISMISS the number of RDF files
with incidents on the same date is far larger: 1,367
and 43 respectively.

In addition to storing the task-ECKGs, we also
read the CoNLL file and annotate its tokens with
numeric event identifiers by taking the checksum
of each URI in the ECKGs and assign the check-
sum to each denotedBy match with a token. The
annotated CoNLL file is submitted for the task.

4 Counting incidents and victims

Given the ECKG representations of incident in-
stances and their subevents, it is straightforward to
answer the task questions. To achieve this, we pro-

cess all the questions and match their constraints
with the knowledge on the task-ECKGs: the inci-
dent type, the date, the participant name, and loca-
tion (if any). This results in a number of matching
incidents and their associated source documents.
For subtask 3, we additionally extract the victims
for the specified subevents killing and injuring.

To obtain the answers, we first check the type of
event in the query (killing, injuring, fire burning,
and job firing) and match it with the subfolders
of the adapted-ECKGs. We only consider the
ECKGs files for a matching type. For shooting
events that are differentiated into killing and in-
juring incidents, we additionally filter the ECKGs
for the occurrence of the corresponding subevents.
From each subfolder, we only load the ECKGs
with matching dates. If there is no date constraint,
we load all ECKGs. In case of a date constraint,
we check if the constraint specifies a day or only a
year or month. If no specific day is specified, we
check if the ECKG files start with the correspond-
ing year and/or month. Else if a specific day is
asked for, we match the full date with the incident
time.

We load all ECKG files that match the above
constraints and consider each incident and its
properties for further matching with other con-
straints on location or participant names. In the
case of location, we first directly match the DBpe-
dia URI for each incident against the sem:hasPlace
properties. If there is no match, we expand the lo-
cation in the query to DBPedia URIs that are re-
lated using spatial properties: north, east, west,
south, northeast, southeast, northwest, and south-
west of the specified location. For participants,
we first check all participants of the incident that
are classified as an entity of type PERSON by the
NERCD module. We check the beginning of the
name in case of a first name constraint and the end-
ing of the name in case of a surname constraint.

After selecting incidents that match the query
constraints, we derive the answers. In the case of
subtask 1, we only provide the document ids for
matched incidents and the numeric answer 1 (if
any document was recovered). In the case of sub-
task 2, we count the unique number of incidents
within the selected ECKGs and the associated doc-
uments of their mentions. If there are none, the
answer is zero. If there is one or more, we provide
the number of incidents and the associated docu-
ment identifiers for their mentions. In the case of

664



<094fe5921b642e30a00cd52ece7b0157#incident#INJURED#
6-year+old+girl+child+little+girl+person+young+girl>
a nwrontology:INJURED ;
gaf:denotedBy 094fe5921b642e30a00cd52ece7b0157#char=11,18,

60ad5103290ae7aa16e39d3cd2695496#char=20,28, etc...;
sem:hasActor se2018-5:non-entity/6-year+old+girl ,

se2018-5:non-entity/person, se2018-5:non-entity/child ,
se2018-5:non-entity/young+girl, se2018-5:non-entity/little+girl ;

sem:hasPlace dbpedia:East_Palo_Alto,_California, dbpedia:Richmond,_California ;
time:inDateTime time:20130505 ;
skos:prefLabel "injury" , "injure" , "shoot" , "wound" .

<8554b200f12a9e9f6fed68f6795ada07#incident>
a nwrontology:SHOOT ;
gaf:denotedBy 8554b200f12a9e9f6fed68f6795ada07#char=2311,2318, etc. ;
sem:hasActor se2018-5:non-entity/kuna+man, se2018-5:entity/Tewalt ;
sem:hasSubEvent <8554b200f12a9e9f6fed68f6795ada07#incident#DEAD#>,

<#incident#INJURED#kuna+man>, <#incident#INJURED#Tewalt+kuna+man>,
<#incident#HIT#Tewalt>, <#incident#INJURED#Tewalt> ;

sem:hasSubType nwrontology:INJURED , nwrontology:DEAD , nwrontology:HIT ;
time:inDateTime time:20161228
skos:prefLabel "accident", "shooting", "incident", "gun", "start", "leave",

"hit", "it", "use", "discharge", "handling", "handle" .

Figure 2: task-ECKG representation of an injure event resulting from establishing event-coreference and aggregat-
ing the event properties across different mentions. The denotedBy and subevent links are adapted to save space.

subtask 3, we additionally extract all victims from
the ECKGs as being injured or killed. If the vic-
tims in the ECKG are entities of the type PER-
SON, we count the unique list of names. If there
are no entities of the type PERSON associated
with the subevents, we simple count the unique
strings of the non-entities associated with injuring
or death. The victim count is then used to answer
subtask 3 queries numerically.

5 Results and discussion

Our system answers the task queries using ECKGs
in which event and participant identity is estab-
lished by the unsupervised NewsReader system.
Next, we reason over the properties of the ECKGs
in relation to the query constraints. We did mini-
mal adaptations for the task and the performance
heavily relies on the quality of the ECKGs. The
adaptations mainly involved detecting the rele-
vant event types among all events detected by
NewsReader, reasoning over the incident date and
matching the location in the query with locations
in the ECKGs using spatial relations from DBpe-
dia. Furthermore, we relied on the one-document-
one-incident heuristic. We expect that the system
can be improved considerably by: 1) improving
the incident-document index using state-of-the-art
clustering techniques ((Li et al., 2005; Nicholls
and Bright, 2018; Wei et al., 2018)), 2) improv-
ing the detection of predicates and the associated

event type on the basis of WSD, 3) improve the de-
tection and reasoning over locations, 4) establish-
ing coreference relations and identity of the partic-
ipants of the events.

Except for subtask 1, our system ranked 2nd in
all tasks. This suggests that it is relatively sta-
ble and can be used to obtain detailed interpre-
tations such as the victim counts for subtask 3.
Also for the event coreference, our system ranks
2nd. Given the low performance on the document-
incident clustering in subtask 1, where we have an
F1 of 23.82, we can expect that this performance
can be substantial higher if we use a state-of-the-
art document-incident clustering technique. Cur-
rently, we used a very simple semantic comparison
over the event properties and do not use most of
the textual data in the documents. We also noticed
that the NewsReader raw-ECKG output is noisy
with respect to the event participants and the lo-
cation detection. There is room for improvement
to better associate frames to events, interpret loca-
tions in the documents and the victims and their
names.

Acknowledgments

This research was funded by the Netherlands Or-
ganization for Scientific Research (NWO) via the
Spinoza grant awarded to Piek Vossen in the
project Understanding Language by Machines.

665



References
Eneko Agirre and Aitor Soroa. 2009. Personalizing

pagerank for word sense disambiguation. In Pro-
ceedings of the 12th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 33–41. Association for Computa-
tional Linguistics.

Collin Baker. 2008. Framenet, present and future. In
The First International Conference on Global Inter-
operability for Language Resources, pages 12–17.

Xavier Carreras, Lluı́s Padró, Lei Zhang, Achim Ret-
tinger, Zhixing Li, Esteban Garcı́a-Cuesta, Željko
Agić, Bozo Bekavac, Blaz Fortuna, and Tadej
Štajner. 2014. Xlike project language analysis ser-
vices. In Proceedings of the Demonstrations at the
14th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 9–
12.

Christiane Fellbaum. 1998. WordNet. Wiley Online
Library.

Antske Fokkens, Marieke van Erp, Piek Vossen, Sara
Tonelli, Willem Robert van Hage, Luciano Serafini,
Rachele Sprugnoli, and Jesper Hoeksema. 2013.
Gaf: A grounded annotation framework for events.
In Proceedings of the 1st workshop on Events: Def-
inition, Detection, Coreference, and Representation,
NAACL2013, Atlanta, GA, USA.

Antske Fokkens, Aitor Soroa, Zuhaitz Beloki, German
Rigau, Willem Robert van Hage, and Piek Vossen.
2014. NAF: the NLP Annotation Format. Technical
report, Vrije Universiteit Amsterdam.

Paul Kingsbury and Martha Palmer. 2002. From tree-
bank to propbank. In LREC, pages 1989–1993.
Citeseer.

Zhiwei Li, Bin Wang, Mingjing Li, and Wei-Ying Ma.
2005. A probabilistic model for retrospective news
event detection. In Proceedings of the 28th an-
nual international ACM SIGIR conference on Re-
search and development in information retrieval,
pages 106–113. ACM.

Tom Nicholls and Jonathan Bright. 2018. Understand-
ing news story chains using information retrieval
and network clustering techniques. arXiv preprint
arXiv:1801.07988.

Marten Postma, Filip Ilievski, and Piek Vossen. 2018.
Semeval-2018 task 5: Counting events and par-
ticipants in the long tail. In Proceedings of the
12th International Workshop on Semantic Evalu-
ation (SemEval-2018). Association for Computa-
tional Linguistics.

Willem Robert Van Hage, Véronique Malaisé, Roxane
Segers, Laura Hollink, and Guus Schreiber. 2011.
Design and use of the simple event model (sem).
Web Semantics: Science, Services and Agents on the
World Wide Web, 9(2):128–136.

Piek Vossen, Rodrigo Agerri, Itziar Aldabe, Agata Cy-
bulska, Marieke van Erp, Antske Fokkens, Egoitz
Laparra, Anne-Lyse Minard, Alessio Palmero Apro-
sio, and German Riga. 2016. Newsreader: using
knowledge resources in a cross-lingual reading ma-
chine to generate more knowledge from massive
streams of news. Knowledge-Based Systems.

Yifang Wei, Lisa Singh, David Buttler, and Brian Gal-
lagher. 2018. Using semantic graphs to detect over-
lapping target events and story lines from newspaper
articles. International Journal of Data Science and
Analytics, 5(1):41–60.

Zhi Zhong and Hwee Tou Ng. 2010. It makes sense:
A wide-coverage word sense disambiguation system
for free text. In Proceedings of the ACL 2010 system
demonstrations, pages 78–83. Association for Com-
putational Linguistics.

666


