
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 497–501
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Tweety at SemEval-2018 Task 2: Predicting Emojis using Hierarchical
Attention Neural Networks and Support Vector Machine

Daniel Kopev, Atanas Atanasov, Dimitrina Zlatkova,
Momchil Hardalov, Ivan Koychev

FMI, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
{dkopev, amitkov, dvzlatkova}@uni-sofia.bg

{hardalov, koychev}@fmi.uni-sofia.bg

Ivelina Nikolova, Galia Angelova
IICT, Bulgarian Academy of Sciences, Sofia, Bulgaria

{iva, galia}@lml.bas.bg
Abstract

We present the system built for SemEval-
2018 Task 2 on Emoji Prediction. Although
Twitter messages are very short we managed
to design a wide variety of features: tex-
tual, semantic, sentiment, emotion-, and color-
related ones. We investigated different meth-
ods of text preprocessing including replacing
text emojis with respective tokens and splitting
hashtags to capture more meaning. To rep-
resent text we used word n-grams and word
embeddings. We experimented with a wide
range of classifiers and our best results were
achieved using a SVM-based classifier and a
Hierarchical Attention Neural Network.

1 Introduction

SemEval 2018 Task 2 on Emoji Prediction (Bar-
bieri et al., 2018) is a classical task for supervised
learning. Given labeled data consisting of Twitter
messages and a corresponding emoji as a label, the
aims is to classify new examples (tweets) into 20
categories - the most frequent emojis of two lan-
guages: English (Subtask 1) and Spanish (Subtask
2). We participated only in Subtask 1. The labels
are presented in Figure 1:

Figure 1: Labels ordered by frequency.

2 Related Work

Prior work includes using LSTM-RNN and CNN
models (Zhao and Zeng) utilizing pre-trained
Twitter embeddings with the latter achieving very
good results. Other works (Barbieri et al., 2017)
show that LSTMs have high accuracy and even
outperform humans at the emoji prediction task.

In (Barbieri et al., 2016) the skip-gram neural em-
bedding model is applied with different dimen-
sions of the vectors and length of the windows ap-
plied to both words and emojis.

3 Data

We used the 500k training and 50k trial tweets
provided by the organizers to train and validate our
models respectively. One key mistake we made
is that we did not compare those two datasets for
duplicate entries. As we found out only after the
submission deadline, the train and trial data had a
40% overlap, which unfortunately skewed our ex-
pected results and made them unrealistically high.
The experimental results presented in Table 2 are
on the data with removed duplicates.

We crawled additional 100k tweets via Tweepy1

only 5k of which were compliant with the require-
ments to contain exactly one emoji. With this ex-
ternal data we aimed to improve the overall per-
formance of our models, but since it was way too
small, it did not have much effect.

Finally, when predicting on the test data, we
trained our models on the combined train, trial and
crawled data.

Looking at the emojis we immediately noticed
two problematic groups: 1. two emojis with a
camera - one with flash and one without; 2. four
emojis containing a heart - three of them exactly
the same, different only in color (red, blue, pur-
ple), and one with two pink hearts. We approach
the second group with color-related features (see
Section 4.2)

4 Method

4.1 Data Preprocessing
Replacing Text Emojis: Text emojis like :), :D,
:o and others should in theory carry valuable

1http://www.tweepy.org/

497



information, thus we encode them to unique
strings that will not be removed in future pre-
processing steps. The encoded strings are:
smile laughing very happy
sad cry and surprise .
Removing Punctuation and Artifacts: The

data given by the orginizers comes with user men-
tions replaced by @user and all URLs removed.
We remove @user, because the user mentions
are taken into account in the feature engineering
step, even though their position is lost. We also
remove automatic location mentions in the form
@ Location. Non-letter characters are also re-
moved, exception is #, used to identify words in
hashtags which we later attempt to split.

Hashtag Splitting: We try to break down each
token starting with # to a set of words. The process
iterates over the token until a word existing in a
corpus is found. Then we take the rest of the token
and recursively apply the same procedure until the
whole original token is empty. The longest match-
ing word is always taken first. For subtoken word
identification we used the Brown corpus. As an-
ticipated, adding a slang corpus seemed to worsen
the splits. For simplicity we take the first found
valid split, but an improvement would be to calcu-
late and take the most probable one.

Tokenization and Lemmatization: A Word-
Net (Miller, 1995) lemmatizer is used on tok-
enized (TweetTokenizer from NLTK2) and lower-
cased beforehand part-of-speech annotated tweets.
High frequency words are removed.

4.2 Features

Textual Features: Since all we had was the text of
the tweet without any metadata or context, we fo-
cused on extracting valuable information from the
text itself. We gathered statistics like number of
words, hashtags, stop-words, user mentions, mean
word length and more. Some of those were specif-
ically targeted at predicting certain emojis. For
instance, we hoped counting the digits and per-
centage signs would help identifying . Punctua-
tion such as question marks, exclamation marks or
words with all title letters could signify an intensi-
fied face emotion like or .

Semantic features: Looking at the train data,
we noticed that 42% of the tweets end in the fol-
lowing pattern: @ LocationName, for instance
Happy birthday Nathan!!! @ Boca Gardens. We

2http://www.nltk.org/

Cluster Id Words
00101111010 almost nearly practically

alm0st nearlly almst
111010100010 lmao lmfao lmaoo lmaooo

lool rofl loool lmfaoo
111010100011 haha hahaha hehe hahahaha

hahah aha hehehe ahaha

Table 1: Twitter clusters.

figured that this was an automatically assigned lo-
cation and extracted it as a separate feature.

Emotion-related features: To capture emo-
tion, we used the NRC Word-Emotion Association
Lexicon (Mohammad and Turney, 2013). It con-
tains a list of English words and their associations
with eight basic emotions - anger, fear, anticipa-
tion, trust, surprise, sadness, joy, and disgust.

Color-related features: Dealing with four
emojis with the heart symbol in different colors,
we decided to use another NRC Lexicon - on
Word-Colour Associations (Mohammad, 2011). It
consists of mappings for eleven colors - white,
black, red, green, yellow, blue, brown, pink, pur-
ple, orange and grey, which covers the four heart
colors in question.

Sentiment features: In order to capture senti-
ment in the tweets, we used SentiWordNet (Bac-
cianella et al., 2010) to associate each token in the
tweet with a positive and negative score.

Twitter clusters: Another observation we made
while looking at the tweets is that there were a
lot of misspelled words and words with identi-
cal meaning written with different syntax (mainly
slang). To handle that we utilized Hierarchical
Twitter Word Clusters3. The clusters also help
identify synonymous words. Three exemplary
clusters of words are shown in Table 1.

All features were used in all classification ex-
periments, except in some of the stacking, where a
subset was used.

4.3 Classifiers
Using the features above, we had represented each
tweet into that vector-space. Experiments were
made with classifiers from various types: Linear,
Non-Linear, and Deep Learning.

Linear Classifiers: For our baseline we used
Multinomial Naive Bayes, which we managed to
outperform with ease. In the subsequent experi-
ments we used linear classifiers - Logistic Regres-
sion with L-BFGS optimizer (Liu and Nocedal,

3http://www.cs.cmu.edu/ ark/TweetNLP

498



1989) and Linear SVMs with SGD optimizer (Bot-
tou, 2010).

Non-Linear Classifiers: As we wanted to over-
come the linearity of the LR and SVMs we had
moved to non-linear classifiers. We had fed our
feature vectors into Random Forest with 300 es-
timators, and AdaBoost with Decision Tree base,
again with the same number of estimators.

Stacking: Another idea was to combine count-
based and semantic features. For this we applied
two versions of Stacking ensembles. The first in-
cludes SVM (tf-idf), AdaBoost (embeddings) and
Random Forest (semantic and sentiment extracted
features). The second one is composed of SVM
(tf-idf), AdaBoost (embeddings) and Multi-layer
Perceptrion (tf-idf). Both ensembles use hard
weighted voting with coefficients 1.5 for the SVM
prediction and 1.0 for the rest.

Deep Learning: We applied some of the state-
of-the-art neural architectures for text-processing.
Our experiments included Multi-layer Perceptri-
ons, Recurrent NNs with LSTM (Hochreiter and
Schmidhuber, 1997) and Convolutional NNs.

In the dev phase we achieved best results us-
ing Hierarchical Attention Neural Network (Yang
et al., 2016) (HANN). The idea of HANN is to
mimic the hierarchical structure of documents. It
has two levels of attention mechanism: for word
and for sentence. This enables them to capture and
act differently on different levels of content impor-
tance. HANNs structure is build up from: word
sequence encoder, word-level attention layer, sen-
tence encoder and a sentence-level attention layer.
Word Encoder gets word annotations from an
embedding matrix summarizing information from
both directions of the words. Word Attention (an
attention mechanism), extracts the most important
words, because not all words contribute equally to
the sentence’s meaning. Sentence Attention (an-
other attention mechanism), is used to mark the
important sentences at sentence level context.

As another experiment we used a two-layered
bidirectional LSTM with a dropout rate of 0.35
and the Adam optimizer.

Another interesting approach that we adapted
was to apply Convolutional Layer for text (Kim,
2014) that allows our network to learn and capture
patterns for adjacent words in sentences. CNN are
widely applied for image data, by using them for
text classification we can learn and track corre-
lations between close words and inputs. An ad-

vantage of CNN over RNN is that CNN are much
faster than RNN architectures. CNNs allow our
network to see the entire input at once and to paral-
lelize all operations, because a convolutional ker-
nel acts on each patch independently.

The key insight of boosting our Neural Network
models was switching from ReLU to ELU as ac-
tivation function. Proper Dropout Strategy (be-
tween 0.35 and 0.4) also improved our validation
score.

5 Experiments and Evaluation

5.1 Experimental Setup

We transformed the training tweets into vectors
using two mainstream techniques: tf-idf repre-
sentation and word embeddings. While building
the tf-idf weights we formed word 6-grams (with-
out the stop words) and removed entries with DF
greater than 0.5. The second approach consisted of
using 200-dimensional GloVe embeddings (Pen-
nington et al., 2014) trained on Twitter corpus
with 27 billion tokens. Using the embedding of
each term we concatenated the component-wise
minimum and maximum vectors (De Boom et al.,
2016). Some classifiers were tested using both
representations when we found that appropriate.

5.2 Results

The results from those experiments on 10k train
(sampled from the train dataset) and 1k test (sam-
pled from the trial dataset) data are presented in
Table 2. The experimental results are on the data
with duplicates removed. The second stacking
gave a better result than SVM, but we did not man-
age to run the model on the whole dataset in time
for the submission. We placed 25th in the official
ranking.

Precision, recall and Macro-F1 per class (on du-
plicated data) can be seen in Table 3.

The confusion matrix in Figure 2 reveals that
two of the most confused classes are the ones with
a camera, which was expected. Less anticipated
is the strong confusion between the heart and the
sun emojis. Overall, the heart emoji is confused
the most with the rest of the classes, but since it’s
the most common one it’s possible that classifiers
often falsely predict it.

In terms of features, we found out that the n-
gram representation of the tweets was the most
important in terms of determining its label and the
additional features did not have much influence.

499



Model Precision Recall Macro-F1
Multinomial Naive Bayes 0.05 0.21 1.763
Logistic Regression with L-BFGS 0.22 0.28 13.16
Multi-Layer Perceptron 2-hidden (ReLU) 0.26 0.26 17.898
Random Forest (300 estimators) 0.20 0.26 16.167
AdaBoost with Decision Tree base (300 estimators) 0.15 0.19 7.825
SVM with tf-idf 0.23 0.27 19.554
SVM with Twitter embeddings 0.16 0.18 8.522
Stacking (SVM + AdaBoost + Random Forest) 0.25 0.24 13.764
Stacking (SVM + AdaBoost + MLP) 0.25 0.28 20.106
Convolutional Neural Network 0.15 0.14 12.034
Recurrent Neural Network with LSTM 0.24 0.17 13.106
HANN 0.30 0.13 15.999
SVM tf-idf 0.30 0.33 23.3
HANN 0.31 0.33 22.518

Table 2: Precision, Recall and F-measure of experimental classifiers on 1k tweets (top) and final classifiers on 50k
tweets (bottom).

Emoji Precision Recall Macro-F1 %
36.53 54.25 43.66 21.6
22.49 29.25 25.43 9.66
35.72 46.52 40.41 9.07
14.78 6.41 8.94 5.21
46.01 48.12 47.04 7.43
8.94 5.52 6.82 3.23

23.07 11.97 15.77 3.99
35.62 18.52 24.37 5.5
20.42 10.65 14.0 3.1
11.87 4.43 6.45 2.35
19.26 20.11 19.68 2.86
52.66 60.39 56.26 3.9
31.33 45.77 37.2 2.53
21.28 5.39 8.6 2.23
8.03 2.91 4.27 2.61

17.62 21.7 19.45 2.49
13.02 4.34 6.51 2.31
48.58 78.64 60.06 3.09
30.14 11.83 16.99 4.83
7.93 2.77 4.11 2.02

Table 3: Precision, Recall, F-measure and percentage
of occurrences in the test set of each emoji.

6 Conclusion

The work we did on the Emoji Prediction task
seems promising, even though we could make our
process better by filtering train data, retrieving
more tweets and focusing more on the preprocess-
ing of the tweets. There’s a lot of room for im-
provement, given that the task is very challeng-
ing - tweets are short and full of slang words and
ambiguous emoticons. We tried to combat those
through some feature engineering, preprocessing
and semantic approach for vectorization.

Figure 2: Confusion matrix per emoji type.

Improvements could be made with the seman-
tic representation of the tweets. Because our em-
bedding representations use coordinate-wise min-
imization and miximization, a lot of meaning is
lost. Embedding approaches that work on a higher
than word level text blocks like Skip-Thoughts
vectors (Kiros et al., 2015) could decrease this
loss. As future work we plan on using more so-
phisticated architectures like deeper CNNs and
Squeeze-and-Excitation Networks for text.

Acknowledgments

This research was done by MSc students in Com-
puter Science at the Sofia University “St Kliment
Ohridski”.

500



References
Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-

tiani. 2010. Sentiwordnet 3.0: an enhanced lexical
resource for sentiment analysis and opinion mining.
In LREC, volume 10, pages 2200–2204.

Francesco Barbieri, Miguel Ballesteros, and Horacio
Saggion. 2017. Are emojis predictable? In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 105–111,
Valencia, Spain. Association for Computational Lin-
guistics.

Francesco Barbieri, Jose Camacho-Collados,
Francesco Ronzano, Luis Espinosa-Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. SemEval-2018 Task 2:
Multilingual Emoji Prediction. In Proceedings of
the 12th International Workshop on Semantic Eval-
uation (SemEval-2018), New Orleans, LA, United
States. Association for Computational Linguistics.

Francesco Barbieri, Francesco Ronzano, and Horacio
Saggion. 2016. What does this emoji mean? a
vector space skip-gram model for twitter emojis.
In Language Resources and Evaluation conference,
LREC, Portoroz, Slovenia.

Léon Bottou. 2010. Large-scale machine learning
with stochastic gradient descent. In Proceedings of
COMPSTAT’2010, pages 177–186. Springer.

Cedric De Boom, Steven Van Canneyt, Thomas De-
meester, and Bart Dhoedt. 2016. Representation
learning for very short texts using weighted word
embedding aggregation. Pattern Recogn. Lett.,
80(C):150–156.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Lin-
guistics.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S. Zemel, Antonio Torralba, Raquel Ur-
tasun, and Sanja Fidler. 2015. Skip-thought vec-
tors. In Proceedings of the 28th International Con-
ference on Neural Information Processing Systems -
Volume 2, NIPS’15, pages 3294–3302, Cambridge,
MA, USA. MIT Press.

Dong C Liu and Jorge Nocedal. 1989. On the limited
memory bfgs method for large scale optimization.
Mathematical programming, 45(1-3):503–528.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

Saif Mohammad. 2011. Colourful language: Measur-
ing word-colour associations. In Proceedings of the
2nd Workshop on Cognitive Modeling and Compu-
tational Linguistics, pages 97–106, Portland, Ore-
gon, USA. Association for Computational Linguis-
tics.

Saif M Mohammad and Peter D Turney. 2013. Crowd-
sourcing a word–emotion association lexicon. Com-
putational Intelligence, 29(3):436–465.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alexander J. Smola, and Eduard H. Hovy. 2016. Hi-
erarchical attention networks for document classifi-
cation. In HLT-NAACL.

Luda Zhao and Connie Zeng. Using neural networks
to predict emoji usage from twitter data.

501


