
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 428–432
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Peperomia at SemEval-2018 Task 2: Vector Similarity Based Approach
for Emoji Prediction

Jing Chen , Dechuan Yang , Xilian Li , Wei Chen ∗ and Tengjiao Wang

Key Lab of High Confidence Software Technologies (MOE), School of EECS,
Peking University, Beijing, 100871, China

{chenjing.amy, yangdechuan, xilianli, pekingchenwei, tjwang}@pku.edu.cn

Abstract

This paper describes our participation in Se-
mEval 2018 Task 2: Multilingual Emoji Pre-
diction, in which participants are asked to pre-
dict a tweet’s most associated emoji from 20
emojis. Instead of regarding it as a 20-class
classification problem we regard it as a text
similarity problem. We propose a vector sim-
ilarity based approach for this task. First the
distributed representation (tweet vector) for
each tweet is generated, then the similarity be-
tween this tweet vector and each emoji’s em-
bedding is evaluated. The most similar emoji
is chosen as the predicted label. Experimental
results show that our approach performs com-
parably with the classification approach and
shows its advantage in classifying emojis with
similar semantic meaning.

1 Introduction

Participants for SemEval 2018 Task 2 (Barbieri
et al.) are asked to predict the most likely asso-
ciated emoji given the tweet. For simplicity pur-
poses, each tweet contains one and only one emoji,
which belongs to the 20 most frequent emojis. We
participate in its subtask 1: Emoji Prediction in
English.

With the wide-spread use on many social plat-
forms, emoji has attracted more and more atten-
tion of researchers recently. Miller et al. (2016)
explored whether emoji renderings or differences
across platforms gave rise to diverse interpreta-
tions of emoji. For the same emoji, the sender
and the receiver may have different interpreta-
tions of its meaning. This misinterpretation oc-
curs when joint perceptual experience of sender
and receiver lacks or the platforms’ rendering style
differs. Some efforts have been devoted to study-
ing emoji through its distributed representation.

∗corresponding author.

Barbieri et al. (2016a,b) trained emoji embed-
dings with a skip-gram model through millions of
tweets, and explored the similarity and relatedness
among these embeddings in various languages.
Their results suggested that the overall seman-
tic of emoji was preserved across languages, but
some emojis were interpretated differently due to
users’ socio-geographical differences. Eisner et al.
(2016) trained emoji embeddings with their short
descriptions and demonstrated that emoji embed-
dings trained through this way were beneficial to
sentiment analysis task.

We believe that the key to better classify emo-
jis is understanding their meaning, since people
intend a particular meaning when they send an
emoji. People view the same characters during the
exchange of plain text. Unlike plain text, emoji
is not definite enough and doesn’t have a gen-
eral acknowledgement of how we should use it.
It is common for different readers to have differ-
ent interpretations of the same emoji, which nat-
urally results in different ways of using emoji.
Na’aman et al. (2017) investigated a wide range of
emoji usage and showed that emojis served at least
two very different purposes: content and function
words or multimodal affective markers.

Word embeddings (Bengio et al., 2003;
Mikolov et al., 2013a,b) are continuous dis-
tributed representations of words, with two good
properties: 1. take word’s semantic meaning
into account, 2. distances between words are
interpretable and can be measured using cosine
distance. Based on such previous work, we
proposed our vector similarity based approach for
emoji prediction: first the neural network model is
trained to generate a 300-d1 vector, which is con-
sidered as the overall sentence vector of the tweet.
Then this tweet vector’s semantic similarity with

1The embedding dimension is 300 in this paper.

428

each emoji’s pre-trained embedding is evaluated.
The predicted label is the one with the highest
similarity.

2 Approach Description

This section describes our approach in detail. It
consists of two parts, one is tweet representa-
tion, the other is similarity computation between
tweet vector and emoji embedding. Whether tweet
vector or emoji embedding is text representation.
Thus we start by discussing previous researches
about text representation.

Many efforts have been made to generate vec-
tors for variable-length texts such as phrases, sen-
tences, paragraphs or documents (Mitchell and La-
pata, 2010; Larochelle and Lauly, 2012; Mikolov
et al., 2013b; Le and Mikolov, 2014). The gener-
ated vectors are of fixed-size, which can be used
as input features for many machine learning meth-
ods.

Word embeddings are distributed word repre-
sentations trained using word2vec models such as
CBOW and skip-gram, which can be interpreted
as the probability distribution of the context the
word exists in. If we take emoji as a normal token
and train it together with its context words using
word2vec models, then its embedding represents
the context this emoji may exists in. We associate
a tweet with its related emoji using tweet’s vector
and emoji’s embedding.

Formally, our vector similarity based approach
can be described as follows: first the tweet’s vec-
tor ŷ is generated using the neural network model,
then its most similar emoji p is decided by calcu-
lating the cosine similarity(1) between ŷ and each
emoji’s embedding yi

2 in the candidate emoji set
E whose size is 20.

cosine(ŷ,yi) =
ŷ · yi

||ŷ|| · ||yi||
(1)

p = argmax
i

cosine(ŷ,yi) (2)

where || · || is L2 norm and p is the predicted emoji
label.

During training, we use the opposite of cosine
similarity as the loss function, which aims to make
the generated tweet vector ŷ closer to the target
emoji’s embedding y.

loss1 = −
∑(

y

||y|| ·
ŷ

||ŷ||

)
(3)

2yi can be found in pre-trained embeddings.

We also tried another loss function which has
similar idea with SVM. That is, minimize the co-
sine distance(4) between ŷ and target emoji em-
bedding y, meanwhile maximize the minimum co-
sine distance between ŷ and non-target emoji em-
bedding ỹ. We hope to make y more distinctive
when similar emojis exist.

d(a, b) = 1− cosine(a, b) (4)

loss2 = αd(ŷ,y)− (1− α)min
ỹ∈F

d(ŷ, ỹ) (5)

where α is a parameter to control the proportion
of each part, F is the set which consists of 19
non-target emojis’ pretrained embeddings for this
tweet.

3 Models

This section describes the two models we used for
generating tweet vector. Barbieri et al. (2017)’s
previous work showed that LSTM neural networks
performed well in emoji prediction. Inspired by
their research, we implement two LSTM based
models: a 2-layered LSTM model and a BiLSTM
model.

3.1 2-layered LSTM
Our first model is a 2-layered LSTM model. This
model consists of one trainable embedding layer
for mapping words into vector representations,
two stacked LSTM layers for processing and ex-
tracting useful information from the tweet, and
one dense layer outputs the tweet vector.

Our experiments show that 2-layered LSTM
works better than single layer LSTM. When
stacked LSTM layer num gets larger than 2, the
system performance doesn’t increase much. Be-
sides, deeper network structure costs more time to
train and more parameters make it easy to overfit.

Long Short-Term Memory network, or LSTM
(Hochreiter and Schmidhuber, 1997) is an en-
hanced version of basic recurrent neural network
(RNN), which uses purpose-built memory cells to
store information selectively (Graves et al., 2013).
LSTM model can better exploit long range con-
text, and is widely used in natural language pro-
cessing tasks.

3.2 BiLSTM
Our second model is a bidirectional LSTM (BiL-
STM) model (Schuster and Paliwal, 1997). This

429

model consists of one trainable embedding layer,
one bidirectional LSTM layer, and one dense out-
put layer.

BiLSTM splits the neuron of a regular LSTM
into two directions, one for positive time direction
(forward states), 5and another for negative time
direction (backward states). Output state oi can
be the concatenation or summation of the forward
and backward state fwi and bwi:

oi = fwi � bwi (6)

where � operator can be concatenate, element-
wise add, etc.

4 Experiments

Our system is implemented using Keras3 and the
code is available on github4. We use the official
evaluation metric macro f1, which evaluates both
precision and recall of each class regardless of its
sample num.

Three groups of experiments are achieved to
evaluate our approach and models. To compare
the vector similarity based approach with the clas-
sification approach, we implement the above 2-
layered LSTM model and BiLSTM model with
the same experiment settings for both approaches.
To figure out which model structure is better, we
compare the 2-layered LSTM model and BiLSTM
model’s performance on both approaches. We also
test the loss functions loss1 and loss2’s effects on
2-layered LSTM model. Next, we will describe
the key experiment settings. More detailed model
settings can be found in Table 1.
Text Preprocessing: The whole tweet is low-
ercased. We split it into token sequence us-
ing Keras’ default tokenizer, which split a sen-
tence by spaces and following punctuations:
!"#$%&()*+,-./:;<=>?@[\]^_‘~\t\n{
|}. Long sequences are truncated and short ones
are padded with 0s from the head to meet fixed
length 20.
Embedding Layer: The embedding layer is set to
be trainable. It is initialized by looking up from
a pre-trained twitter embedding matrix (Barbieri
et al., 2016a), <UNK> is initialized as 0.
Output Layer: For classification approach, the
output layer’s unit num is 20 (same with the num

3https://keras.io/
4https://github.com/MonkandMonkey/

amyjing_emoji_predict.git

Item Value Description
data_set 466,233 train set size
optimizer Adam train optimizer
batch_size 128 batch size
max_len 20 fixed sequence len
num_words 58,205 vocab size

2-layered LSTM model
lstm1_size 300 lstm1 output size
lstm2_size 300 lstm2 output size

BiLSTM model
lstm_size 300 lstm output size
bilstm_size 300 bilstm output size
merge_mode sum bilstm merge mode

Table 1: Experiment settings.

Model Valid Test

CL
2-LSTM 27.119 25.678*
BiLSTM 26.492 25.166*

VS
2-LSTM(loss1) 27.188 25.444
2-LSTM(loss2) 27.089 25.496
BiLSTM(loss1) 26.441 25.281

Table 2: Experiment Results. CL for classification ap-
proach, VS for vector similarity based approach, 2-lstm
for 2-layered LSTM model. The results marked with
asterisk (*) are our submissions for final evaluation.

of emoji classes). For vector similarity based ap-
proach, the output layer’s unit num is 300 (same
with the size of the pre-trained emoji embedding).
Training Loss: For our vector similarity ap-
proach, loss1 and loss2 described in section 2 are
tested separately. For classification approach, cat-
egorial_cross_entropy is used.

5 Discussion

As is shown in Table 2, the vector similarity based
approach’s performance is comparable with the
classification approach on both validation set and
test set.

For both our vector similarity based and clas-
sification approaches, the 2-layered LSTM model
outperforms the BiLSTM model, which shows
that a deeper network structure contributes to cap-
turing higher level features. Our 2-layered LSTM
model consists of two stacked LSTM cells which
are combined vertically. The first LSTM layer
learns the shallower representation of the tweet,
the second LSTM layer learns more abstract repre-
sentation. Our BiLSTM layer also consists of two

430

Figure 1: classification BiLSTM: confusion matrix Figure 2: vector similarity BiLSTM: confusion matrix

LSTM cells, but are combined in a horizontal way.
With the same number of parameters, the deeper
structure (2-layered LSTM) works better than the
wider structure (BiLSTM).

Experiments show that the loss1 is slightly bet-
ter than the loss2 function. They are different in
that loss1 only considers the most similar emoji’s
distance, whereas loss2 considers both most sim-
ilar emoji’s distance and the second most similar
emoji’s distance. We tested several α values in
loss2 from 0.8 to 0.99, and 0.9 gives the best per-
formance, which is also dominated by the most
similar emoji’s distance.

Figure 1 and Figure 2 plot the confusion matrix
of BiLSTM model’s predictions for classification
and our vector similarity approach. The (red
heart) column in Figure 1 shows that the classifi-
cation approach tends to misclassify other classes
into the most frequent emoji . And for emojis
with similar semantics, it is more likely to confuse
them. Like the (face-throwing-a-kiss) row, the
classification approach misclassified most to

, whereas the vector similarity based approach
only misclassified a smaller part of them, and its
correctly predict num is relatively higher. In short,
the classification approach is good at distinguish-
ing emojis with concrete meanings, such as ,

, and , but poor at distinguishing emojis with
similar semantic meanings. The vector similarity
based approach can make a trade-off between both
situations.

Besides, for both our proposed approach and
classification approach, the performance on test
set is relatively lower than that on validation set.
Thus dataset will also make an influence, espe-

cially for tweet, which is time-sensitive text. If
the test set contains many words that unseen dur-
ing the training stage or its class distribution dif-
fers from the training set, the performance will be
influenced.

6 Future Work and Conclusion

The pre-trained embeddings we used are trained
with a skip-gram model, which treats emojis and
words equally, whereas for this task we need to
concentrate more on emoji’s semantic, instead of
its syntactic. Thus we suppose that treating emoji
in a different way from word during the training
stage will do a favor. That is, whether the emoji is
in the head, center or tail of the tweet, its relative
part can be used to train the emoji’s embedding,
despite it is outside the context window. Another
attempt worth trying is to use a Logistic Regres-
sion or Linear SVM classifier to find tweet’s most
appropriate emoji, instead of cosine similarity.

In this paper, we present our work for SemEval-
2018 task 2: Multilingual Emoji Prediction. We
propose a vector similarity based approach which
generates a vector for tweet and then use co-
sine similarity to find its most appropriate emoji.
Through which we hope to explore the relation-
ship between words and emojis. Experimental
results show that the vector similarity based ap-
proach performs comparably with the classifica-
tion approach. It provides an innovative thinking
for solving the emoji prediction problem.

431

References
Francesco Barbieri, Miguel Ballesteros, and Horacio

Saggion. 2017. Are emojis predictable? In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 105–111.
Association for Computational Linguistics.

Francesco Barbieri, Jose Camacho-Collados,
Francesco Ronzano, Luis Espinosa-Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and Ho-
racio Saggion. SemEval-2018 Task 2: Multilingual
Emoji Prediction. In Proceedings of the 12th
International Workshop on Semantic Evaluation
(SemEval-2018).

Francesco Barbieri, German Kruszewski, Francesco
Ronzano, and Horacio Saggion. 2016a. How cos-
mopolitan are emojis?: Exploring emojis usage and
meaning over different languages with distributional
semantics. In Proceedings of the 2016 ACM on Mul-
timedia Conference, pages 531–535. ACM.

Francesco Barbieri, Francesco Ronzano, and Horacio
Saggion. 2016b. What does this emoji mean? a
vector space skip-gram model for twitter emojis. In
LREC.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research,
3(Feb):1137–1155.

Ben Eisner, Tim Rocktäschel, Isabelle Augenstein,
Matko Bošnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning emoji representations from
their description. arXiv preprint arXiv:1609.08359.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In Acoustics, speech and sig-
nal processing (icassp), 2013 ieee international con-
ference on, pages 6645–6649. IEEE.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Hugo Larochelle and Stanislas Lauly. 2012. A neural
autoregressive topic model. In Advances in Neural
Information Processing Systems, pages 2708–2716.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Inter-
national Conference on Machine Learning, pages
1188–1196.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Hannah Miller, Jacob Thebault-Spieker, Shuo Chang,
Isaac Johnson, Loren Terveen, and Brent Hecht.
2016. Blissfully happy” or “ready to fight”: Varying
interpretations of emoji. Proceedings of ICWSM,
2016.

Jeff Mitchell and Mirella Lapata. 2010. Composition
in distributional models of semantics. Cognitive sci-
ence, 34(8):1388–1429.

Noa Na’aman, Hannah Provenza, and Orion Montoya.
2017. Varying linguistic purposes of emoji in (twit-
ter) context. In Proceedings of ACL 2017, Student
Research Workshop, pages 136–141.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681.

432

