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Abstract

This paper presents our single model to Sub-
task 1 of SemEval 2018 Task 2: Emoji Predic-
tion in English. In order to predict the emo-
ji that may be contained in a tweet, the basic
model we use is an attention-based recurrent
neural network which has achieved satisfacto-
ry performs in Natural Language processing.
Considering the text comes from social media,
it contains many discrepant abbreviations and
online terms, we also combine word-level and
character-level word vector embedding to bet-
ter handling the words not appear in the vo-
cabulary. Our single model1 achieved 29.50%
Macro F-score in test data and ranks 9th a-
mong 48 teams.

1 Introduction

SemEval-2018 shared task 2 (Barbieri et al., 2018)
provides a platform for us to explore the relation-
ship between text and emoji in Twitter. The par-
ticipants are expected to predict, given a tweet in
English or Spanish, its most likely associated e-
moji. As the number of frequently-used emojis up
to 20, this is also a multi-category classification
task. Overall, both the prediction of emoji and the
multi-category classification have undoubtedly in-
creased the difficulty of task 2.

Before choosing a suitable model, we first an-
alyze the data characteristics in detail. For each
emoji, we count the total number of all tweets
words under this emoji and enumerate the top 10
meaningful words with the highest frequency. And
we can explore the following observations from
the statistics:

• In almost all emojis, the first three words that
appear frequently include “@user” suggest-
ing that Twitter is a highly interactive social

1https://github.com/wwmmqq/SemEval-2018-Task-2-
Multilingual-Emoji-Prediction

networking site (all the person names uni-
fied as “users” during the data preprocess-
ing). Such a tweet should include an unwrit-
ten but important context information.

• Because people do not always have the same
understanding of emojis, some words can e-
voke more than one emoji. The greater the
repetition of high-frequency words among d-
ifferent emojis, the harder it is to distinguish
among these tweets.

• There are also some easily recognizable
words. They are just common words un-
der a certain emoji, almost do not appear
under others, such as “lit” and “fire” under

; “photo” under ; “usa”, “america” and
“vote” under ; “beach” and “summer” un-
der .

• When glancing over the data, we find that
tweets have the following characteristics:
a) Non-standard language, some discrepant
shorthand or Internet jargon causes the model
to get confused about the word; b) Misspelled
words, although the human can easily real-
ize the correct words, but if the model takes
word-level as the processing unit, it cannot
process them correctly. All of these can af-
fect the ability of text representation serious-
ly.

Taking all of these factors into consideration,
we explore solutions form three perspectives:

• The second observation indicates that tra-
ditional statistical-based model may not
achieve good performance, so we decide to
adopt a neural network.

• Considering that the importance of each word
is different in one tweet although text is very
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short no more than 140 words, we introduce
an attention mechanism to extract the key
words in tweets.

• As the last observation can generate some to-
kens do not appear in the vocabulary (OOV),
we utilizes both word-level and character-
level word vector embedding.

In a word, our single model is an attention-
based neural network with word-level and
character-level sentence embedding.

2 System Description

Our model architecture is depicted in Fig. 1 and it
consists of the following three subparts: word em-
bedding layer, BiLSTM layer and attention layer.

2.1 Word Embedding Layer
Assuming there are n words in a giving sentence
x, we denote it as x = 〈w1, w2, · · · , wn〉. At each
time step t, both the word lookup table and a bidi-
rectional LSTM take the same wordwt as an input.

Word-level embedding The word-level input is
projected into a high-dimensional space by a word
lookup table E ∈ R|V|×d, which you can get from
publicly available word2vector 2 tool, where |V |
is the vocabulary size and d is the dimension of a
word vector. Then we refer to the obtained vector
as xword

wt
.

Character-level embedding The character-
level input is converted into a vector by using a
recurrent neural network. In order to better cap-
ture the interaction between adjacent characters,
we use a bidirectional LSTM (BiLSTM) (Graves,
2005) to model the words. BiLSTM contains a
forward LSTM processing the input from the first
char to the last char, and a backward LSTM per-
forming the opposite action. The last hidden s-
tates of the forward and the backward recurrent
networks are linearly combined to xchar

wt
.

Combine word-level and character-level em-
bedding We generate the final vector representa-
tion of a word by combining two distinct represen-
tations of the word:

xwt = gwordx
word
wt

+©gcharxchar
wt

(1)

where +© is a concatenation operator, gword and
gchar are weights which can be calculated as:

gword = σ(W1x
word
wt

+ b1) (2)
2https://https://code.google.com/p/word2vec

gchar = σ(W2x
char
wt

+ b2) (3)

here W1, W2, b1 and b2 are trainable parameters,
σ(·)is a sigmoid function.

2.2 BiLSTM Layer
Recurrent Neural Network (RNN) (Elman,
1990) (Mikolov et al., 2010) (Chung et al., 2014)
is proposed for modeling long-distance depen-
dence in a sequence, but it tends to suffer from
the gradient vanishing and exploding problems.
RNN with Long Short-Time Memory Network
unit (Hochreiter and Schmidhuber, 1997) solves
such problems by introducing a memory cell
and gates into the network. In order to better
model the tweets, we use a bidirectional LST-
M(BiLSTM) (Graves et al., 2014) (Graves, 2005)
to process the inputs.

Each single LSTM (LSTMforward and
LSTMbackward) can be formalized as shown in
(Gers and Schraudolph, 2003):

Then we use +© to obtain the hidden layer rep-
resentation as below:

−→
hwt = LSTMforward(xwt ,

−−−→
hwt−1) (4)

←−
hwt = LSTMbackward(xwt ,

←−−−
hwt−1) (5)

ht =
−→
hwt +©←−hwt (6)

here
−→
h t,
←−
h t are the hidden layer states for single

word wt, which generate from the combination of
the current word information xwt and previous s-
tate information

−−→
ht−1(

←−−
ht−1). For simplicity, we

note all the n ht as H = (h1,h2, · · · ,hn).

2.3 Attention Layer
In our model we introduce an attention mechanism
to focus on certain part of the tweet (Santos et al.,
2016) (Yang et al., 2017). The motivation main-
ly comes from the following two observations: a)
although tweet is short, it always introduces much
noise; b) the emoji decided by a relative small part
of tweet content itself. The attention layer pro-
duces a weight vector applied to hidden states of
BiLSTM.

The attention mechanism takes the whole hid-
den states H as input, and outputs a vector of
weights a:

a = softmax(W3tanh(W4H
T )) (7)
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Figure 1: Our model architecture

here W3 and W4 are trainable parameters, the
softmax() ensures all computed weights sum up
to 1.

Then we sum up the BiLSTM hidden states H
according to the weight provided by a to get the
input representation r:

r = aH (8)

2.4 Output

At the output layer, we need to predict the emoji
evoked by the tweet. We use the softmax func-
tion to predict the probability distribution over all
emojis:

p(ŷ|r) = softmax(W5r + b5) (9)

where W5 and b5 are the parameters of softmax
function.

The training loss based on cross-entropy is de-
fined as follow:

J(θ) = − 1

N

N∑

t=1

H (yi, ŷi) + β ‖θ‖2 (10)

where θ is the whole trainable parameters of the
model, and β is the weight for the regularization
term. H is the cross-entropy function for instance
i between the gold category yi and predict catego-
ry ŷi. N is the number of training instance.

3 Experiment

3.1 Dataset

SemEval-2018 provided 500k tweets in English
and 100k in Spanish for task 2, while our model

is only for English. Dateset is split into trial, train-
ing and test sets. However, it was unable to down-
load all the training set because some tweets were
deleted or not available due to modified authoriza-
tion status, and we finally collected 471, 455 train-
ing tweets.

3.2 Data Pre-processing
All of the tweets before feeding to any model
are pre-processed as follows: all tweets are low-
ercased; URLs are replaced by < url > to-
ken; USERNAMEs are replaced by @user token;
NLTK3 is employed to tokenize input tweets.

3.3 Training
We use the 200-dimensional vectors (Barbier-
i et al., 2016) to initialize our words matrix E, and
set max length of one word to 10, max length of
one sentence to 30. All of the models are trained
for 10 epochs, and the final model is selected by
trial dataset. Adam optimizer (Kingma and Ba,
2014) with initial learning rate of 0.001 is used to
minimized cross-entropy loss. The learning rate
is reduced by a factor of 10 for the first 3 epoch.
The models were implemented in TensorFlow and
experiments were run on an Intel(R) Core(TM) i7-
4790 CPU.

3.4 Baselines
We compare our model with the following base-
lines: FastText (Joulin et al., 2016), NBOW,
Convolutional Neural Networks (CNN) (Kim,
2014) (Kalchbrenner et al., 2014), Recurrent Con-
volutional Neural Networks (RCNN) (Sentences
are first separately embedded with CNN, and then
joined up with RNN) (Kalchbrenner and Blunsom,
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Model Representation F1 P R Acc

Basic

FastText

Word Only

25.19 30.07 24.60 34.74
NBOW 24.62 28.19 24.28 32.98
CNN 20.34 22.54 23.00 34.73

RCNN 26.89 26.97 29.62 32.53
BiLSTM 20.36 22.41 23.00 34.74

BiLSTM+ATT 24.95 34.87 26.34 36.44
Basic C2W2S+ATT Char Only 27.77 28.39 28.01 34.56

Our Submit C2W2S+ATT Char+Word 29.50 35.17 29.91 39.21
Rank 1: cagri - 35.99 36.55 36.22 47.09

Table 1: Experimental results on test data and result of rank 1 system

2013), BiLSTM (Graves et al., 2014) and BiLST-
M+ATT (Graves et al., 2014).

3.5 Results and Discussion on Training Data

A series of comparison experiments on training set
have been performed to explore the performance
of our model in macro F-score(F1), precision(P),
recall(R) and accuracy(Acc). The experimental re-
sults are shown in Table 1 in percentage. For the
first part, we choose some basic models which on-
ly use the word-level word vector embedding as
input; for the second part, we present ablation ex-
periments showing usefulness of word-level and
character-level embedding.

Statistics show the following three conclusions:
1) among the basic model, the best performance
according to different evaluation metrics achieved
by RCNN (F1), BiLSTM+ATT (Precision), RCN-
N (Recall) and BiLSTM+ATT (Accuracy) respec-
tively; 2) when compare the two model (Word On-
ly and Char Only) about BiLSTM+ATT, word-
level model and character-level model comple-
ment each other on the four measurements. So we
consider combining the two to obtain Char+Word
BiLSTM model; 3) as the ablation experiments
show, our model can get best result when combine
word-level input with character-level input.

4 Results on Test Data

Detailed official results of our model are shown in
Table 2. And we focus on analyzing performance
of our model under each emoji combined with the
characteristics of tweets summarized in section 1.

On the one hand, our model achieved promising
results in the following emojis: (F1: 69.06),
(F1: 64.01), and (F1: 55.46). As for the reason,
section 1 gives us inspiration: the common words
evoke these emojis are easily recognizable, in oth-

Emo P R F1 %
40.3 64.38 49.57 21.6
30.82 32.96 31.86 9.66
38.6 55.56 45.55 9.07
31.23 4.57 7.97 5.21
57.83 53.28 55.46 7.43
13.39 8.56 10.44 3.23
22.11 17.94 19.81 3.99
33.41 26.26 29.41 5.5
36.05 10.26 15.98 3.1
20.81 7.83 11.38 2.35
31.9 53.7 40.02 2.86
64.94 63.11 64.01 3.9
36.24 50.59 42.23 2.53
56.49 7.81 13.72 2.23
16.33 9.19 11.76 2.61
32.18 26.13 28.84 2.49
20.39 6.42 9.76 2.31
64.12 74.82 69.06 3.09
43.31 23.05 30.08 4.83
12.95 1.78 3.13 2.02

Table 2: Precision, Recall, F-measure and percentage
of occurrences in the test set of each emoji.

er words, the word “christmas” evoking emoji
is barely used in emoji .

On the other hand, for those emojis that are eas-
ily confused, our model does not perform well,
such as , and . So we analyze data and
find that these three emojis have the highest rate
of repetition of common words with other emojis.
For example, the common words under emoji
include “love” (top2) and “happi” (top5), but the
two words also evoke and frequently.

Overall, the Macro F-score of our model ranks
9th in the subtask 1.
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