
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 358–363
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

RIDDL at SemEval-2018 Task 1: Rage Intensity Detection with Deep
Learning

Venkatesh Elango, Karan Uppal
Bloomberg

New York, NY, USA
{velango,kuppal8}@bloomberg.net

Abstract

We present our methods and results for af-
fect analysis in Twitter developed as a part of
SemEval-2018 Task 1, where the sub-tasks in-
volve predicting the intensity of emotion, the
intensity of sentiment, and valence for tweets.
For modeling, though we use a traditional
LSTM network, we combine our model with
several state-of-the-art techniques to improve
its performance in a low-resource setting. For
example, we use an encoder-decoder network
to initialize the LSTM weights. Without any
task specific optimization we achieve compet-
itive results (macro-average Pearson correla-
tion coefficient 0.696) in the El-reg task. In
this paper, we describe our development strat-
egy in detail along with an exposition of our
results.

1 Introduction

Sentiment analysis is a technique to classify doc-
uments based on the polarity of opinion expressed
by the author of the document (Pang et al., 2002).
Traditionally this involved extracting coarse sen-
timent (positive, negative, or neutral) from doc-
uments such as news articles, product or movie
reviews (Wiebe et al., 2005; Hu and Liu, 2004).
In order to get a fine grained view of the opinion,
sentiment analysis was applied at the sentence and
phrase level (Yu and Hatzivassiloglou, 2003; Wil-
son et al., 2005). With the advent of social me-
dia, Twitter in particular, sentiment towards a wide
range of topics could be extracted at a much larger
scale than before. This however came with its own
set of problems, viz., a lack of proper grammatical
structure, prevalence of slang, acronyms, and mis-
spellings (Jansen et al., 2009; Barbosa and Feng,
2010).

SemEval tasks have provided a curated test-
ing environment for analysis on Twitter data with
tasks to quantify sentiment on two-point, three-

point, and five-point scales (Nakov et al., 2016;
Rosenthal et al., 2017). While a finer gradation
in polarity of the text could be inferred by intro-
ducing more nuanced categories, it faces the prob-
lem of needing to collect more labeled data as
the number of classes increase. Therefore, this
approach requires that the intensity of the senti-
ment expressed be measured on a continuous scale
rather than through discrete categories. SemEval
2018 Task 1 takes a novel step in this direction by
introducing tasks for predicting intensity of emo-
tion, or sentiment expressed (Mohammad et al.,
2018).

We participated in SemEval-2018 Task-1 (El-
Reg, V-reg, V-oc) and our contributions through
this paper are as follows:

• We present an LSTM network combined with
known state-of-the-art techniques to improve
performance on low-resource setting tasks.

• The proposed model requires no task specific
hyper-parameter tuning.

• We perform error analysis of our model to
obtain a better understanding of strengths
and weaknesses of a deep learning-based ap-
proach for these tasks and propose improve-
ments.

2 Methods

2.1 Datasets

For each subtask, the organizers provide train-
ing and development datasets for model training
and hyperparameter selection. The details on how
much data and how it was labeled can be found
here (Mohammad and Kiritchenko, 2018). We
concatenate the training and development datasets
and sample 10% of this combined dataset, to use
as validation data. Our model training involves an

358



Figure 1: Network architecture.

unsupervised phase and a supervised phase, which
is described in detail in Section 2.3. For the unsu-
pervised learning phase, we use the concatenated
training data from all the tasks, and for the super-
vised learning phase, we use the task specific train-
ing data.

2.2 Model

We start by pre-processing and tokenizing the
tweets by adapting the pre-processing used in
training GloVe word embeddings for Twitter (Pen-
nington et al., 2014). Following the pre-processing
techniques used in GloVe, we retain punctua-
tions, normalize mentions, numbers, URLs, smi-
leys (happy, neutral, and sad separately), and in-
clude tags for hashtags, repeating, and all upper
case characters. In addition, we also pre-process
emojis by replacing them with their Unicode text
description1.

After a tweet is broken down into a sequence of
tokens, it is then converted to a sequence of vectors
using the 200-dimensional GloVe word embed-
dings for Twitter which was trained on 2 billion
tweets with a vocabulary of size 1.2 million (Pen-
nington et al., 2014).

This sequence of word vectors is next input to
an LSTM network (Hochreiter and Schmidhuber,
1997), with h1 hidden units. The output from the
last time step of the LSTM cell is passed through
a layer of h2 hidden units with ReLU activation.
A final sigmoid layer then produces the output.
Since all of the tasks, including the ordinal clas-
sification task, have an innate sense of ordering,
we cast them as regression problems. The network
architecture is shown in Figure 1.

1http://unicode.org/emoji/charts/emoji-list.html

2.3 Training

We tried two different training strategies. The re-
sults submitted before the official deadline used
the first strategy. Since then, we identified a few
key areas of improvement and used the second
training strategy to get much better results. Both
strategies are described below and the results are
discussed in Section 3.

2.3.1 Strategy 1
We divide the training of our model into two
phases, an unsupervised phase and a supervised
phase.

Unsupervised Phase
Since the amount of training data is small (approx-
imately 2000 labeled samples on average across
all tasks) in comparison to the number of pa-
rameters (approximately 500,000) of the model,
the training of the model could be unstable and
prone to over-fitting. To counter this problem, the
weights of the LSTM are initialized using a mod-
ified sequence auto-encoder (Dai and Le, 2015).
This modified sequence auto-encoder uses sepa-
rate encoder and decoder networks, attempting to
reconstruct the input to the encoder at the output
of the decoder by minimizing the mean squared er-
ror between them (Elango et al., 2017; Srivastava
et al., 2015). For this unsupervised learning phase,
we pool the training data from all the tasks and use
10% of it as a validation set. The validation set is
used to tune the number of epochs. The validation
loss is minimized for 5 epochs. Then, we fine-tune
these weights with task specific training + valida-
tion data and this fine-tuning is run for another 10
epochs.

The unsupervised learning procedure is crucial
for the good initialization of weights in the super-
vised task. As the model optimizes its weights for
reconstruction of the sequence, it is able to learn
the structure of the data.

Supervised Phase
For the supervised phase, the weights from the
encoder network are used as initialization. To
learn a generalizable model, instead of optimiz-
ing the hyper-parameters for each task separately,
we optimize the hyper-parameters only for the
anger intensity regression sub-task (EI-reg anger)
which was picked arbitrarily. For tuning the hyper-
parameters we combine the training and develop-
ment set provided for the task and randomly sam-

359



Hyperparameter Value
h1 256
h2 32
nmb 32
e 5
pdo 0.5

Table 1: Hyperparameters used for network training.

ple 10% of the data from this task as a validation
set. The set of hyper-parameters optimized are the
number of hidden units (h1, h2), mini-batch size
(nmb), number of epochs to train the network (e)
and dropout probability (pdo). For all the other
tasks, the same optimized set of hyper-parameter
values are used in training the model with all of
the task specific training data.

Also, per recommendation from (Gers et al.,
2000; Jozefowicz et al., 2015), to enable gradient
flow, the bias term in the forget gate of the LSTM
is initialized to 1. We apply dropout to the recur-
rent states (Gal and Ghahramani, 2016) and the
hidden nodes with a probability of pdo, to prevent
over-fitting to the training data. The model opti-
mization is carried out by back-propagation using
Adam optimizer (Kingma and Ba, 2014).

Using the above approach, the set of hyper-
parameters that provide the best performance are
reported in Table 1.

2.3.2 Strategy 2
After observing the results for all the subtasks we
noticed that variance is fairly high in the predicted
intensities. This is also visible in the scatter plots
of true and predicted intensity, shown in Figures 2
and 3. We also noticed during the hyper param-
eter optimization on the anger task that the gap
between the validation loss and training loss was
high.

Simpler Model and Regularization
The above observations led us to believe that we
might be over-fitting to the training data. Hence
we tried the following steps to reduce over-fitting:

1. Reduced number of parameters: Number of
hidden units of LSTM was reduced to 100.

2. Increased dropout rate: Increased the dropout
in the hidden layer to 0.75.

Additional Unlabeled Data
Furthermore, we believed that the unsupervised
phase of our training could benefit from more un-

labeled data. So we pooled in all the development
and test data across all the tasks along with the
training data, and used it in the unsupervised learn-
ing of weights of the LSTM. To tune the number
of epochs, we set aside 10% of the combined train-
ing, development, and test as validation set. It is
important to note that at no point were gold labels
of test data used in any phase of training. This was
simply an inexpensive way to get more data for
trainining the unsupervised phase.

Ensemble
To further improve the prediction performance, we
take an ensemble of 5 versions of our model and
also optimize the number of epochs of training
for each task for each of the 5 models. All the
other hyper-parameters are kept the same across
all tasks. For each of the 5 models, a random
validation set with 10% of the labeled data is set
aside to tune the number of epochs. Therefore,
each model of the ensemble is being trained 90%
of randomly sampled data. The supervised phase
is trained, with random initialization for the dense
layer, for 15 epochs, and the model state is saved
at the end of every epoch. Finally the model cor-
responding to the epoch with the lowest validation
loss is picked. All 5 models are used to predict on
the test set, and the average of the 5 predictions is
used as the final prediction of the ensemble.

3 Results

Models trained with both strategies are evaluated
using Pearson correlation as the metric. We com-
pare our performance with an unigram SVM base-
line, as well as the best submission for each sub-
task. The official submitted results using Strategy
1 are reported in Tables 2 and 3 for subtask EI-reg
and in Tables 4 and 5 for subtasks V-reg and V-oc
respectively. The improved results using strategy
2 are reported in Table 6. The results in table 6 are
averaged over 5 runs and report the standard devi-
ation over the runs as well. We find that strategy
2 improves the macro-average Pearson correlation
from 0.666 to 0.696.

To further analyze the results for the regression
tasks, we created scatter plots shown in Figures 2
and 3. We plot the predicted intensity score against
the gold label intensity score and also show the
line of best fit.

Analyzing the scatter plots, we note that our
model consistently overestimates the intensity

360



a

b

c

d

Figure 2: Plot of predicted against gold intensity score
for emotion intensity regression using Strategy 1.

Emotion
Model Anger Fear Joy Sadness

Baseline 0.526 0.525 0.575 0.453
Ours 0.695 0.659 0.638 0.672
Best 0.827 0.779 0.792 0.798

Table 2: Pearson correlation on emotion intensity re-
gression task (EI-reg) in English for each emotion us-
ing Strategy 1.

Model Macro-average
Baseline 0.520

Ours 0.666
Best 0.799

Table 3: Macro average of Pearson correlation on emo-
tion intensity regression task (EI-reg) in English using
Strategy 1.

Model Valence
Baseline 0.585

Ours 0.782
Best 0.873

Table 4: Pearson correlation on valence intensity re-
gression task (V-reg) in English using Strategy 1.

Model Valence
Baseline 0.509

Ours 0.593
Best 0.836

Table 5: Pearson correlation on valence ordinal classi-
fication task (V-oc) in English using Strategy 1.

Pearson Correlation
Emotion Average Std Dev
Anger 0.717 0.0021
Fear 0.695 0.0020
Joy 0.688 0.0054

Sadness 0.685 0.0020
Macro-average 0.696 0.0054

Table 6: Pearson correlation (average and standard de-
viation of 5 runs) on emotion intensity regression task
(EI-reg) in English using Strategy 2.

when the gold label score is low and underesti-
mates the intensity when the gold label score is
high. The overestimation of low gold label score
is most pronounced in the case of emotion inten-
sity regression for joy and this is reflected in its
low Pearson correlation in Table 2. Emotion in-
tensity regression for fear has larger variance in
predicted intensities for high gold label scores and

361



Figure 3: Plot of predicted against gold intensity score
for valence regression using Strategy 1.

this too can be seen in the relatively low Pearson
correlation reported in Table 2. While anger and
sadness emotions also make under estimation er-
ror for high gold label scores, the line of best fit as
well as the Pearson correlation are better than the
corresponding ones for joy and fear.

The performance of the model in the valence re-
gression task is markedly better in comparison to
the performance in the emotion intensity regres-
sion tasks, as seen from the Pearson correlation, in
Table 3, as well as the line of best fit, in Figure 3.

4 Conclusion

We presented an LSTM based approach for affect
and emotion intensity regression and described
our training strategy which did not involve any
task specific hyper-parameter optimization. We
did not employ any task specific hyper-parameter
optimization to demonstrate that the training pro-
cedure is robust and that the model can be trained
to achieve reasonable performance without be-
ing highly sensitive to values of hyper-parameters.
We also show how the traditional LSTM network
can be combined with known state-of-the-art tech-
niques to get improvements in low resource set-
tings. We use an encoder-decoder network to ini-
tialize the LSTM weights and use ensembles of
our network to further improve performance. On
the other hand, when the goal is to maximize per-
formance, task specific hyper-parameter optimiza-
tion could be employed, which is shown in strat-
egy 2 where tuning the number of epochs on a per
task basis helps the performance.

References

Luciano Barbosa and Junlan Feng. 2010. Robust sen-
timent detection on twitter from biased and noisy
data. In Proceedings of the 23rd international con-
ference on computational linguistics: posters, pages
36–44. Association for Computational Linguistics.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In Advances in Neural Informa-
tion Processing Systems, pages 3079–3087.

Venkatesh Elango, Aashish N Patel, Kai J Miller, and
Vikash Gilja. 2017. Sequence transfer learning for
neural decoding. bioRxiv, page 210732.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in Neural Information
Processing Systems, pages 1019–1027.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins.
2000. Learning to forget: Continual prediction with
lstm. Neural computation, 12(10):2451–2471.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168–177.
ACM.

Bernard J Jansen, Mimi Zhang, Kate Sobel, and Abdur
Chowdury. 2009. Twitter power: Tweets as elec-
tronic word of mouth. Journal of the Association for
Information Science and Technology, 60(11):2169–
2188.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya
Sutskever. 2015. An empirical exploration of recur-
rent network architectures. In Proceedings of the
32nd International Conference on Machine Learn-
ing (ICML-15), pages 2342–2350.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Saif M. Mohammad and Svetlana Kiritchenko. 2018.
Understanding emotions: A dataset of tweets to
study interactions between affect categories. In
Proceedings of the 11th Edition of the Language
Resources and Evaluation Conference, Miyazaki,
Japan.

362



Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio
Sebastiani, and Veselin Stoyanov. 2016. Semeval-
2016 task 4: Sentiment analysis in twitter. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation (SemEval-2016), pages 1–18.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up?: sentiment classification using
machine learning techniques. In Proceedings of the
ACL-02 conference on Empirical methods in natural
language processing-Volume 10, pages 79–86. As-
sociation for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017. Semeval-2017 task 4: Sentiment analysis in
twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 502–518.

Nitish Srivastava, Elman Mansimov, and Ruslan
Salakhudinov. 2015. Unsupervised learning of
video representations using lstms. In International
Conference on Machine Learning, pages 843–852.

Janyce Wiebe, Theresa Wilson, and Claire Cardie.
2005. Annotating expressions of opinions and emo-
tions in language. Language resources and evalua-
tion, 39(2-3):165–210.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. In Proceedings of the con-
ference on human language technology and empiri-
cal methods in natural language processing, pages
347–354. Association for Computational Linguis-
tics.

Hong Yu and Vasileios Hatzivassiloglou. 2003. To-
wards answering opinion questions: Separating facts
from opinions and identifying the polarity of opinion
sentences. In Proceedings of the 2003 conference on
Empirical methods in natural language processing,
pages 129–136. Association for Computational Lin-
guistics.

363


