
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 97–101
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Chrono at SemEval-2018 Task 6:
A System for Normalizing Temporal Expressions

Amy L. Olex, Luke G. Maffey, Nicholas Morton, Bridget T. McInnes
Virginia Commonwealth University, Department of Computer Science

Richmond, Virginia, USA
{alolex, maffeyl, mortonn, btmcinnes}@vcu.edu

Abstract

Temporal information extraction is a challeng-
ing task. Here we describe Chrono, a hybrid
rule-based and machine learning system that
identifies temporal expressions in text and nor-
malizes them into the SCATE schema. Af-
ter minor parsing logic adjustments, Chrono
has emerged as the top performing system for
SemEval 2018 Task 6: Parsing Time Normal-
izations.

1 Introduction

Understanding and processing temporal informa-
tion is vital for navigating life. The human
mind processes subtle temporal expressions in-
stantly and effortlessly; however, it is difficult for
computers to do the same. Identifying, process-
ing, and utilizing this information requires knowl-
edge and understanding of syntax, semantics, and
context to link temporal information to related
events and order them on a time-line. SemEval
2018 Task 6 (Laparra et al., 2018) aims to nor-
malize fine-grained temporal information and re-
lationships into the Semantically Compositional
Annotations for Temporal Expressions (SCATE)
schema developed by (Bethard and Parker, 2016).
This scheme aims to improve upon the current
TIMEX3/TimeML (Pustejovsky et al., 2003) stan-
dard by representing a wide variety of temporal
expressions, allowing for events to act as anchors,
and using mathematical operations over a time-
line to define the semantics of each annotation.
To address this challenge, we developed Chrono1,
a hybrid rule-based and machine learning (ML)
Python package that normalizes temporal expres-
sions into the SCATE schema.

1https://github.com/AmyOlex/Chrono

2 The Chrono System

Our approach to building this hybrid system
includes four processing phases: 1) text pre-
processing, 2) flagging numeric and temporal to-
kens, 3) temporal expression identification, and 4)
SCATE normalization.

1) Text Pre-processing: Python’s Natural Lan-
guage Toolkit (NLTK) WhitespaceTokenizer and
part-of-speech (POS) tagger (Bird and Loper,
2004) process raw text files to identify individual
tokens, token spans, and POS tags. Punctuation
is not handled at this phase as it is important for
identifying correct spans.

2) Flagging Numeric and Temporal Tokens:
All numeric tokens are flagged regardless of con-
text. Subsequent phases utilize contextual infor-
mation to determine if a numeric token is part of
a temporal expression. Depending on the task, a
rule may remove all or some punctuation, and/or
convert tokens to lowercase prior to parsing. In
the following, RP and LC denote Removing all
Punctuation and converting to LowerCase, re-
spectively.

Numeric Flagging: Tokens are flagged as nu-
meric if either 1) the token has a POS tag of “CD”
(Cardinal Number), or 2) the text can be converted
to a numeric expression. Textual representations
of numeric expressions are converted to numer-
ics with the Word2Number2 Python module. A
custom method recognizes ordinals from “first” to
“thirty-first” and converts them into the associated
numerics 1 to 31, respectively. LC normalization
is done prior to parsing textual numerics.

Temporal Flagging: Temporal tokens are
flagged through rule-based parsing using lists of
key words and regular expressions. This phase
is more liberal in its identification of a tempo-
ral token than the SCATE normalization phase, so

2https://github.com/akshaynagpal/w2n

97



it identifies a broader range of potential tempo-
ral tokens that are refined in future steps. Tokens
may be numeric and temporal simultaneously. Nu-
meric tokens with the characters ‘$’, ‘#’, or ‘%’
are NOT marked as temporal. The following types
of tokens are flagged as temporal:

• Formatted date patterns using ‘/’ or ‘-’:
mm/dd/yyyy, mm/dd/yy, yyyy/mm/dd, or
yy/mm/dd
• Formatted time patterns matching hh:mm:ss
• Sequence of 4 to 8 consecutive digits match-

ing range criteria for 24-hour times or for
a year, month, and/or day (e.g. 1998 or
08241998).
• Spelled out month or abbreviation, e.g.

“Mar.” or “March”, are flagged after RP ex-
cept periods as they are required to retrieve
correct spans.
• Days of the week, e.g. “Sat.” or “Saturday”,

are parsed similar to months.
• Temporal words indicating periods of time,

e.g. “yesterday” or “decade”, are flagged af-
ter RP and LC.
• Mentions of AM and PM in any format are

flagged after RP except periods.
• The parts of a week, e.g. “weekend” and

“weekends”, are flagged after RP and LC.
• Seasons of the year are flagged after RP and

LC.
• Various parts of a day, e.g. “noon” or “morn-

ing”, are flagged after RP and LC.
• Time zones are flagged after RP.
• Other temporal words, e.g. “this”, “now”,

“nearly”, and others, are flagged after RP and
LC.

3) Temporal Expression Identification: A
temporal expression is represented by a temporal
phrase, which we define as two or more consec-
utive temporal/numeric tokens on the same line,
or an isolated temporal token, with some excep-
tions. If a numeric token contains a ‘$’, ‘#’, or
‘%’, or the text ‘million’, ‘billion’, or ‘trillion’ it
is not included in a temporal phrase as these gen-
erally refer to non-temporal values. Additionally,
isolated numeric tokens are not considered a tem-
poral phrase.

4) SCATE Normalization: Chrono parses each
temporal phrase into zero or more SCATE en-
tities, links sub-intervals, and disambiguates the
SCATE entities “Period” and “Calendar-Interval”
via a machine learning module. Chrono imple-

ments 32 types of entities with 5 parent types
that have been described by (Bethard and Parker,
2016). Parsing strategies differ depending on the
composition of a temporal phrase being parsed.
Each temporal phrase is interrogated by all of the
following parsing strategies.

Formatted Dates and Times: Formatted
dates/times are parsed using regular expressions.
To identify which format the date/time is in,
Chrono looks for a 2-digit or 4-digit year first, then
uses that position for orientation to identify the re-
maining elements. If a formatted date/time is iden-
tified, then the appropriate sub-intervals are linked
during element parsing. 4-digit years take prece-
dence over 2-digit years.

Numeric Dates and Times: Header and meta-
data for Newswire articles frequently have nu-
meric dates listed with no punctuation (e.g.
“19980218” codes for “Feb, 18 1998”), and iso-
lated 4-digit year mentions are frequent. After
formatted dates and times are parsed, any phrase
containing a numeric token is interrogated for a
potential date or year mention. If a numeric to-
ken is 4-digits it is tested for a year between 1500
and 2050, 6-digit tokens are parsed for 2-digit
year/month/day, and 8-digit strings are parsed for
a 4-digit year and 2-digit month/day. All elements
must be in the proper range, otherwise the token is
skipped. Appropriate sub-intervals are linked dur-
ing element parsing.

24-hour Time: 24-hour times are identified by
either the format hhmmzzz, where zzz is the
time zone, or a 4-digit number that has not been
classified as a year. Hour digits must be less than
24 and minutes less than 60. Sub-intervals are
linked at this time if existing. Time zones are han-
dled separately and are linked back to the hour en-
tity during the final sub-interval linking step.

Temporal Token Search: The majority of textual
temporal entities are identified by looking for spe-
cific tokens. Token categories include days of the
week, months, parts of a day/week, time zones,
and other temporal operators such as “early”,
“this”, “before”, etc. Prior to looking for these to-
kens, text is normalized by RP and LC. Exceptions
to RP include searching for day/month abbrevia-
tions, such as “Sat.” or “Aug.”. In these cases pe-
riods are not removed because they are part of the
SCATE span. Another exception to RP and LC
is identifying mentions of AM or PM where peri-
ods are kept and text is not converted to lowercase

98



in order to capture variations like “PM” or “p.m.”.
Non-temporal mentions of the months or seasons
of the year “may”, “march”, “spring”, and “fall”
are disambiguated using POS tags, where tokens
that refer to a temporal entity generally have a POS
tag of “NN” or “NP”. Sub-intervals are not linked
during token searches.

Text Year: Another special case of parsing
temporal tokens are textual representations of
years such as “nineteen ninety-seven”. The
Word2Number Python module was modified to
recognize these phrases. Previously, it would add
19 and 97 together instead of returning 1997.

Periods and Calendar-Intervals: The same tem-
poral token can refer to either a SCATE “Pe-
riod” or “Calendar-Interval”. For example, in the
phrases “in a week” vs “next week” the token
“week” is classified differently. Due to language
intricacies it is difficult to define a rule-base sys-
tem to disambiguate these entities as the classifi-
cation is contingent on the topic being discussed
where phrasing around the entity can be different
for each instance. Thus, Period/Calendar-Interval
tokens are initially identified by a token search us-
ing a defined list of terms, then the identified term
and its span are passed to a ML algorithm for clas-
sification.

Machine Learning Classification: Four ML al-
gorithms are available in Chrono to differentiate
between “Period” and “Calendar-Interval” entities
using contextual information. Chrono implements
Naive Bayes (NB), Neural Network (NN), De-
cision Tree (DT), and Support Vector Machine
(SVM). Binary feature vectors for all implemen-
tations have the following features:

• temporal self: If the target is flagged as tem-
poral, this feature is set to “1”.
• temporal context: If there is at least one tem-

poral word within a 5-word window up- or
down-stream of the target this feature is set
to “1”.
• numeric: If there is a numeric expression ei-

ther directly before or after (a 1-word win-
dow) the target, this feature is set to “1”.
• context: All words within a 5-word window

are identified as features and set to “1” if that
word is present. Prior to identifying these
features all words are normalized with RP
and LC. The 5-word window includes cross-
ing sentence boundaries before and after the
target word.

We use NLTK with default parameters to imple-
ment NB and DT, NN is a simple feed-forward
network with three hidden layers implemented us-
ing Python’s Keras package 3 with epochs set to
5 and batch set to 10, and SVM is implemented
using SciKitLearn (Pedregosa et al., 2011) with C
set to 0.05 and max iterations set to 3.

Ordinals: Ordinals such as “first” or “3rd”
are classified as an “NthFromStart” entity in the
SCATE schema. These mentions are identified by
normalizing with RP and LC before searching for
the ordinal tokens representing the numbers 1-31.

Sub-Interval Linking: After all SCATE entities
are identified, all temporal phrases are re-parsed
to identify sub-intervals within each phrase. For
example, entities in the phrase “August 1998” are
parsed by two different methods leaving the sub-
interval link vacant. During sub-interval linking,
the year “1998” has the “August” entity added as
a sub-interval. Sub-interval linking reviews enti-
ties from the smallest to the largest, adding miss-
ing sub-intervals as needed. This method assumes
each temporal phrase contains zero or one of each
type of SCATE entity.

Next/Last Parsing: Determining whether an en-
tity is referring to a date in the future, “Next”, or
past, “Last”, depends on context and the document
time (doc-time). Next/Last parsing is done after
all other parsing, and checks two cases: 1) if a
temporal phrase contains a year, no additional an-
notation is made, and 2) if specific modifier words
are present (e.g. “next” or “last”) immediately pre-
ceding a temporal expression, the modifier is an-
notated with a sub-interval referencing the follow-
ing temporal entity. If neither of these cases hold,
the year is set as the doc-time year, and the month
and day are compared to the full doc-time to de-
termine if it occurs before or after. Note the year
assumption is not always valid and more complex,
content-based parsing may be required to achieve
higher precision. Finally, if a day of the week (e.g.
“Saturday”) is mentioned, Chrono finds the first
preceding verb in the sentence, and if it is past
tense the temporal entity is annotated as “Last”,
otherwise it is annotated as “Next”.

3 Results

Training and evaluation of Chrono utilizes the
Newswire corpus, consisting of 81 documents,
provided by the task organizers. Average preci-

3https://github.com/keras-team/keras

99



sion, recall, and F1-measure of 5-fold cross val-
idation for Track 1 (parsing) are reported in Ta-
ble 1 (annotations for “Event” and “Modifier” are
ignored). Scores for “100% Correct Entity” con-
sider the entity location and all properties (like
sub-intervals), and scores for “Correct Span” only
consider the entity location.

On average, all ML algorithms perform simi-
larly for the “100% Correct Entity”. All versions
also obtain a higher F1 score when only consider-
ing correct spans versus getting all entity proper-
ties correct. This indicates that Chrono correctly
identifies the majority of temporal entities, but has
trouble parsing some of the properties.

ChronoNN processed the final evaluation
dataset, which consisted of 20 previously un-
seen Newswire articles, and received a F1 of .44.
The evaluation dataset contained five articles from
BBC that were not represented in the training
dataset. Chrono’s low performance indicates that
it may be over-fit to the the training dataset. This
is one downfall of rule-based systems, where new
rules need to be developed for each new type of
temporal representation. Upon further review we
found the submitted version of Chrono had three
minor parsing flaws that resulted in unintentional
false positives.

1) Formatted dates such as “2013-02-22” were
being parsed twice. The first parse specifically
looked for a 4-digit year and identified all correct
entities, then the second parse looked for a for-
matted date with a 2-digit year, but didn’t check to
see if a year had already been found, so returned a
2-digit year with the value “22”. This was easily
fixed by having the 2-digit year parser check for
a 4-digit year flag before proceeding (month and
day flags were already implemented).

2) 24-hour time priority was incorrectly placed
above 4-digit year. This resulted in any isolated 4-
digit year being parsed as a 24-hour time expres-
sion rather than a year as originally intended. A
simple flip of parsing order resolved this issue.

3) Numeric temporal expressions, such as an
isolated 4-digit year, were being parsed as a whole
phrase rather than breaking out each token within
the phrase. For example, the year in the phrase
“Last 1953” was not being identified because it
was not in a phrase all by itself. To fix this the
parsing function was edited to loop through each
token in a phrase (a method that was already im-
plemented in most other parsers and was just over-

100% Correct Entity
P R F1

Chrono NB .686 .630 .657
Chrono NN .684 .629 .656
Chrono DT .687 .632 .658

Chrono SVM .689 .630 .660
Correct Span

Chrono NB .823 .752 .786
Chrono NN .820 .749 .783
Chrono DT .822 .751 .785

Chrono SVM .827 .755 .789
Evaluation Results

Chrono NN .46 .42 .44
Post-Evaluation Results

Chrono NN .61 .50 .55

Table 1: Chrono results on Newswire corpus for Track
1. All standard errors are <= 0.03, and no method
performed statistically significantly better than another.

looked here).
ChronoNN received a Post-Evaluation F1 of .55

for Track 1 after implementing these fixes, which
sets ChronoNN as the top performing system for
SemEval 2018 Task 6, Track 1.

4 Conclusions and Future Work

Chrono is currently the top performing system for
Track 1 of Task 6, but there are still many areas
that can be improved. Notably, we plan to im-
plement “Event” and “Between” parsing, as well
as refine current strategies as new temporal ex-
pressions are identified. Utilizing sentence tok-
enization instead of relying on new lines could im-
prove phrase identification; however, this did not
appear to be a major source of error in parsing the
Newswire dataset. Additionally, usability can be
improved by moving all parsing rules to separate,
customizable files. We also plan to expand ML use
to additional disambiguation tasks, and implement
an ensemble system utilizing all four ML methods.
We aim to extract the temporal phrase parser into a
stand-alone system and compare it’s performance
directly to existing programs like SUTime (Chang
and Manning, 2012) and HeidelTime (Strtgen and
Gertz, 2010) as it has done a decent job of iden-
tifying temporal entities in this challenge. Fi-
nally, we will evaluate Chrono’s performance on
the THYME dataset (Styler IV et al., 2014) using
the post-evaluation submission system.

100



References
Steven Bethard and Jonathan Parker. 2016. A semanti-

cally compositional annotation scheme for time nor-
malization. In Lrec, volume 2016, pages 3779–
3786.

Steven Bird and Edward Loper. 2004. Nltk: the nat-
ural language toolkit. In Proceedings of the ACL
2004 on Interactive poster and demonstration ses-
sions, page 31. Association for Computational Lin-
guistics.

Angel X. Chang and Christopher D. Manning. 2012.
Sutime: A library for recognizing and normaliz-
ing time expressions. In Lrec, volume 2012, pages
3735–3740.

Egoitz Laparra, Dongfang Xu, Steven Bethard,
Ahmed S. Elsayed, and Martha Palmer. 2018. Sem-
eval 2018 task 6: Parsing time normalization. In
Proceedings of the 12th International Workshop on
Semantic Evaluation, SemEval ’18, New Orleans,
LA, USA. Association for Computational Linguis-
tics.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

James Pustejovsky, José M Castano, Robert Ingria,
Roser Sauri, Robert J Gaizauskas, Andrea Set-
zer, Graham Katz, and Dragomir R Radev. 2003.
Timeml: Robust specification of event and tempo-
ral expressions in text. New directions in question
answering, 3:28–34.

Jannik Strtgen and Michael Gertz. 2010. Heideltime:
High quality rule-based extraction and normaliza-
tion of temporal expressions. In Proceedings of
the 5th International Workshop on Semantic Evalua-
tion, SemEval ’10, pages 321–324, Stroudsburg, PA,
USA. Association for Computational Linguistics.

William F. Styler IV, Steven Bethard, Sean Finan,
Martha Palmer, Sameer Pradhan, Piet C. de Groen,
Brad Erickson, Timothy Miller, Chen Lin, and Guer-
gana Savova. 2014. Temporal annotation in the clin-
ical domain. Transactions of the Association for
Computational Linguistics, 2:143.

101


