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Abstract

In this paper we introduce our system
participating at the 2017 SemEval shared
task on keyphrase extraction from scien-
tific documents. We aimed at the creation
of a keyphrase extraction approach which
relies on as little external resources as pos-
sible. Without applying any hand-crafted
external resources, and only utilizing a
transformed version of word embeddings
trained at Wikipedia, our proposed system
manages to perform among the best partic-
ipating systems in terms of precision.

1 Introduction

The sheer amount of scientific publications makes
intelligent processing of papers increasingly im-
portant. Automated keyphrase extraction tech-
niques can mitigate the severe difficulties arising
when navigating in massive document collections.
Hence, extracting keyphrases from scientific lit-
erature has generated substantial academic inter-
est over the past years (Witten et al., 1999; Hulth,
2003; Kim et al., 2010; Berend, 2016a).

Continuous word representations such as
word2vec (Mikolov et al., 2013) has gained
increasing popularity recently. These representa-
tions assign some semantically meaningful low
dimensional vector wi to the vocabulary entries of
large text corpora.

We demonstrated previously (Berend, 2016b)
that useful features can be derived for various se-
quence labeling tasks by performing a sparse de-
composition of the word embedding matrix. In
this paper, we investigate the generalization prop-
erties of our proposed approach for the task of
keyphrase extraction.

2 Sequence labeling framework

Our sequence labeling framework builds on top of
our previous work which aimed at multiple dif-
ferent sequence labeling tasks, i.e. part-of-speech
tagging and named entity recognition.

2.1 Feature representation

Each token in a sequence is described by a set of
feature values and those of its direct neighbors in
our model. We relied on multiple sources for de-
riving features, i.e.

• sparse coding of dense word embeddings,

• Brown clustering of words,

• word identity features and

• orthographic characteristics.

2.1.1 Sparse coding derived features
The main source of features was sparse coding
performed on continuous word embeddings. We
demonstrated in (Berend, 2016b) that sequence la-
beling tasks can largely benefit from the sparse
decomposition of dense word embedding matri-
ces. That is, given a word embedding matrix
W ∈ Rd×|V | – with its columns containing the
d dimensional dense word embeddings – we seek
for its decomposition into a product ofD ∈ Rd×K

and α ∈ RK×|V | – containing sparse linear com-
bination coefficients for each of the word embed-
dings – such that ‖W −Dα‖2F +λ‖α‖1 gets min-
imized.

Features for some wordwi are then determined
based on its corresponding vectorαi by taking the
signs and indices of its non-zero coefficients, i.e.

f(wi) = {sign(αi[j])j | αi[j] 6= 0},

where αi[j] denotes the jth coefficient in αi.
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As we observed a consistent benefit of using
polyglot (Al-Rfou et al., 2013) embeddings previ-
ously, we now also rely on those embeddings for
keyphrase extraction.

2.1.2 Brown clustering
Brown clustering (Brown et al., 1992) defines a
hierarchical clustering over words and cluster su-
persets can be easily turned into features. We used
the commonly employed approach of deriving fea-
tures from the length-p (p ∈ {4, 6, 10, 20}) pre-
fixes of Brown cluster identifiers as it was done
previously by Ratinov and Roth (2009); Turian
et al. (2010) as well.

We used the implementation of Liang (2005)
for determining 1024 Brown clusters1 based on
the same Wikipedia dump which was used upon
the training of the freely available polyglot
word embeddings2 that we relied on for perform-
ing sparse decomposition.

2.1.3 Orthographic features
Orthographic clues can vastly help identifying
keyphrases in scientific publications. For this rea-
son the below listed indicator features get deter-
mined for some word w:

• isNumber(w)

• isT itleCase(w)

• isNonAlnum(w)

• containsNonAlnum(w)

• prefix(w, i) for 1 ≤ i ≤ 4

• suffix(w, i) for 1 ≤ i ≤ 4

2.2 Training the model
Features described in Section 2.1 were utilized in
linear chain CRFs (Lafferty et al., 2001) relying
on the CRFsuite (Okazaki, 2007) implementation.
CRFSuite was applied with its default regulariza-
tion parameters, i.e. 1.0 and 0.001 for `1 and `2
regularization, respectively.

The shared task also required the identifica-
tion of keyphrase types beyond merely finding the
keyphrases within the text. We handled the fact
that keyphrase scopes of different keyphrase types
could overlap by training a separate CRF model

1https://github.com/percyliang/
brown-cluster

2https://sites.google.com/site/rmyeid/
projects/polyglot

Sentence Word form Token
Train 35.10% 77.77% 94.59%
Dev 36.19% 86.77% 94.84%
Test 31.84% 83.48% 94.49%

(a) Overall word representation coverages.

Material Process Task
Train 85.03% 91.65% 93.55%
Dev 82.60% 92.05% 96.21%
Test 80.35% 88.84% 93.14%

(b) Per-category token-level coverage breakdown.

Table 1: Coverages of the word embeddings.

for each keyphrase type and merging the predic-
tions of the different models in a post-processing
step. The models we trained employ the 5-class
BIOES-augmented tagging scheme for the labels.

3 Experiments

In this section we report our evaluations on the
SemEval-2017 Task 10 dataset which consists of
350 training, 50 development and 100 test text pas-
sages, respectively. Each text passage originates
from either Computer Science, Material Sciences
or Physics publications and the task was to identify
and classify keyphrases into the types of Material,
Process and Task.

The shared task included both a keyphrase type
insensitive (Subtask A) and sensitive (Subtask B)
evaluation. Further details about the dataset and
the description of the keyphrase types can be ac-
cessed in (Augenstein et al., 2017).

The only preprocessing we performed on the
shared task data was sentence splitting and tok-
enization of input sentences. These steps were ex-
ecuted relying on spacy3. In order the sparse
word embedding and Brown clustering-based fea-
tures to work effectively, it is important that the
a substantial amount of tokens from the shared
task data have word representation determined for,
i.e. the coverage of the word representations is sat-
isfactory.

Table 1 includes the coverage of the word rep-
resentations for the training, development and test
sets. Table 1a contains the proportion of sentences
with all words having a word representation de-
termined for, alongside with the same values for

3https://spacy.io
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Figure 1: Micro-averaged F-scores for Subtask B as a function of varying λ and K parameters for sparse
coding without Brown clustering-based and orthographic features being used.

Precision Recall F-score
Subtask A 0.51 0.27 0.35
Subtask B avg. 0.40 0.21 0.28

Material 0.46 0.27 0.34
Process 0.39 0.19 0.26

Task 0.09 0.05 0.06
(a) Excluding word identity features.

Precision Recall F-score
Subtask A 0.51 0.30 0.38
Subtask B avg. 0.39 0.23 0.29

Material 0.43 0.29 0.35
Process 0.38 0.20 0.27

Task 0.14 0.05 0.07
(b) Including word identity features.

Table 2: Results of the official submission on the
test data with K = 128, λ = 0.9.

word forms and tokens. Table 1b provides a more
detailed breakdown of the coverages of word rep-
resentations for the different keyphrase types also.

As subsequent results illustrate, higher word
coverage for a certain type of keyphrase does not
necessarily imply better performance on that type
as e.g. Task-type keyphrases have the highest to-
ken coverage, nevertheless, scores are the lowest
on that particular type (cf. Table 4).

3.1 Results on development data

Figure 1 illustrates the effect of varying the K and
λ hyperparameters of sparse coding when not re-
lying on orthographic or Brown clustering derived
features. Figure 1b illustrates the effect of adding
word identity features to the sparse coding derived
ones, which suggests that the choice of K = 1024

Precision Recall F-score
Subtask A 0.49 0.25 0.33
Subtask B avg. 0.37 0.19 0.25

Material 0.42 0.26 0.32
Process 0.36 0.15 0.21

Task 0.13 0.05 0.07

Table 3: Results on the test set with all features
used except for the sparse coding-derived ones.

seems to a reasonable choice for sparse coding
since for that value ofK, adding word identity fea-
tures over the sparse coding derived ones yields
marginal (or no) improvements. Inspecting Fig-
ure 1a also reveals that setting the regualrization
parameter λ too high hurts performance.

Subsequently, we investigate how does adding
orthographic and Brown clustering-derived fea-
tures affect results for two extremely different
hyperparameter combinations of sparse coding,
i.e. K = 128, λ = 0.9 and K = 1024, λ = 0.1.
These results are presented in Table 4a-4d. Ta-
ble 4 reveals that when orthographic and/or Brown
clustering-based features are used in conjunction
with the sparse coding derived ones, results be-
come more stable, i.e. they are much less affected
by the choices of theK and λ. Simultaneously, the
importance of word identity features diminishes
once orthographic and/or Brown clustering-related
ones get involved in the model. This effect is more
pronounced when adding orthographic features.

Interestingly, when both orthographic and
Brown clustering related features are employed,
results become better for small values of K, how-
ever, this was not the case without the application
of these additional feature classes.
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Sparse coding only +Brown +Orthograpy +Brown+Orthography
P R F P R F P R F P R F

Subtask A 0.69 0.18 0.28 0.64 0.25 0.36 0.63 0.32 0.42 0.61 0.34 0.44
Subtask B avg. 0.59 0.15 0.24 0.56 0.22 0.31 0.53 0.27 0.36 0.54 0.30 0.39

Material 0.63 0.22 0.33 0.64 0.28 0.39 0.62 0.34 0.44 0.63 0.36 0.46
Process 0.53 0.11 0.19 0.50 0.20 0.28 0.44 0.24 0.31 0.48 0.28 0.35

Task 0.20 0.01 0.01 0.25 0.05 0.08 0.45 0.10 0.17 0.32 0.13 0.19

(a) Results with K = 128, λ = 0.9, excluding word identity as features.

Sparse coding only +Brown +Orthograpy +Brown+Orthography
P R F P R F P R F P R F

Subtask A 0.64 0.25 0.36 0.65 0.27 0.38 0.58 0.33 0.43 0.62 0.34 0.44
Subtask B avg. 0.57 0.22 0.32 0.59 0.25 0.35 0.50 0.29 0.37 0.55 0.30 0.39

Material 0.65 0.26 0.38 0.70 0.31 0.43 0.60 0.35 0.44 0.63 0.36 0.45
Process 0.51 0.21 0.30 0.50 0.22 0.31 0.44 0.25 0.32 0.49 0.29 0.36

Task 0.27 0.05 0.09 0.29 0.04 0.08 0.30 0.14 0.19 0.39 0.11 0.17

(b) Results with K = 128, λ = 0.9, including word identity as features.

Sparse coding only +Brown +Orthograpy +Brown+Orthography
P R F P R F P R F P R F

Subtask A 0.56 0.29 0.38 0.57 0.30 0.40 0.57 0.33 0.42 0.55 0.33 0.41
Subtask B avg. 0.49 0.26 0.34 0.49 0.26 0.34 0.49 0.29 0.36 0.48 0.29 0.36

Material 0.59 0.31 0.40 0.61 0.31 0.41 0.60 0.35 0.44 0.59 0.35 0.44
Process 0.45 0.23 0.30 0.43 0.24 0.30 0.41 0.27 0.33 0.43 0.27 0.33

Task 0.25 0.15 0.19 0.21 0.11 0.14 0.25 0.10 0.14 0.20 0.12 0.15

(c) Results with K = 1024, λ = 0.1, excluding word identity as features.

Sparse coding only +Brown +Orthograpy +Brown+Orthography
P R F P R F P R F P R F

Subtask A 0.56 0.30 0.39 0.59 0.29 0.39 0.58 0.33 0.42 0.58 0.34 0.42
Subtask B avg. 0.49 0.26 0.34 0.52 0.25 0.34 0.50 0.28 0.36 0.50 0.29 0.37

Material 0.65 0.26 0.38 0.70 0.31 0.43 0.60 0.35 0.44 0.63 0.36 0.45
Process 0.44 0.26 0.33 0.50 0.24 0.32 0.42 0.27 0.33 0.44 0.28 0.34

Task 0.21 0.06 0.09 0.18 0.08 0.11 0.24 0.07 0.11 0.20 0.09 0.12

(d) Results with K = 1024, λ = 0.1, including word identity as features.

Table 4: Ablation experiments on the development set. P=Precision, R=Recall, F=F-scores.

3.2 Results on test data

Based on our experiments on the development
data, out official shared task submission employed
K = 128, λ = 0.9 alongside with orthographic
and Brown clustering-derived features. One of our
official submissions relied on word form features,
whereas the other dismissed such ones. The final
results of our submissions are included in Table 2.

As our main goal was to verify the applicabil-
ity of sparse coding derived features in keyphrase
extraction as well, we checked the performance
of the model which uses all features except for
the sparse coding derived ones. The result of that
model is presented in Table 3. By comparing these
scores with those in Table 2, we can see that even
when using a low value for K and a large reg-
ularization parameter λ we manage to get better
F-scores when sparse coding related features are
employed.

4 Conclusion

In this paper, we proposed an approach for extract-
ing keyphrases from scientific publications. A key
source of features in our approach were those de-
rived from the sparse coding of continuous word
embeddings.

In our approach we did not use any task-specific
features (such as lists or gazetters), which implies
that i) by relying on some extra task specific fea-
tures, results could be easily improved on this task
and ii) the proposed approach is likely to be suc-
cessfully applicable to further sequence labeling
tasks without severe modifications.
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