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Abstract

The system developed by the
SSN MLRG1 team for Semeval-2017
task 5 on fine-grained sentiment analysis
uses Multiple Kernel Gaussian Process for
identifying the optimistic and pessimistic
sentiments associated with companies
and stocks. Since the comments on the
same companies and stocks may display
different emotions depending on time,
their properities like smoothness and
periodicity may vary. Our experiments
show that while single Kernel Gaussian
Process can learn some properties well,
Multiple Kernel Gaussian Process are
effective in learning the presence of
different properties.

1 Introduction

Sentiments have been widely studied as they play
an important role in human intelligence, ratio-
nal decision making, social interaction, percep-
tion, memory, learning and creativity (Pang and
Lee, 2008; Strapparava and Mihalcea, 2008; Maas
et al., 2011; Li et al., 2015). The ability to dis-
cern and understand human sentiments is criti-
cal for making interactive human-like computer
agents, and requires the use of machine learning
approaches (Alm et al., 2005).

2 Gaussian Process

Gaussian Process (GP) is a Bayesian non-
parametric approach to machine learning. A Gaus-
sian Process is a collection of random variables,
any infinite number of which have a joint Gaus-
sian distribution (Rasmussen and Williams, 2006).
Using a Gaussian process, we can define a distri-
bution over functions f(x),

f(x) ∼ GP (m(x), k(x, x′)) (1)

where m(x) is the mean function, usually defined
to be zero, and k(x, x′) is the covariance function
(or kernel function) that defines the prior prop-
erties of the functions considered for inference.
Gaussian Process has the following main advan-
tages (Cohn and Specia, 2013; Cohn et al., 2014).
• The kernel hyper-parameters can be learned

via evidence maximization.
• GP provides full probabilistic prediction, and

an estimate of uncertainty in the prediction.
• Compared to SVMs which need unbiased

datasets for good performance, GPs do not
usually suffer from this problem.
• GP can be easily extended and incorporated

into a hierarchical Bayesian model.
• GP works really well when combined with

kernel models.
• GP works well for small datasets too.

2.1 Gaussian Process Regression

The Gaussian Process regression framework as-
sumes that, given an input x, output y is a noise
corrupted version of a latent function evaluation.
In a regression setting, we usually consider a
Gaussian likelihood, which allows us to obtain a
closed form solution for the test posterior (Ebden,
2008). Gaussian Process model, as they are ap-
plied in machine learning, is an attractive way
of doing non-parametric Bayesian modeling for
a supervised learning problem. GP-based model-
ing has the ability to learn hyper-parameters di-
rectly from data by maximizing the marginal like-
lihood. Like other kernel methods, the Gaussian
Process can be optimized exactly, given the values
of their hyper-parameters and this often allows a
fine and precise trade-off between fitting the data
and smoothing.

A practical implementation of Gaussian Pro-
cess Regression (GPR) (Rasmussen and Williams,
2006) is outlined in the following algorithm:
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Algorithm: Predictions and log-marginal likeli-
hood for GP regression.
Input: X (training inputs) , y (training targets),
k (covariance function), σ2

n (noise level), x∗ (test
input).
Output: Predictive mean, variance and log-
marginal likelihood.

1. L := cholesky(K + σ2
nI)

2. α := LT \(L\y)
3. f∗ := k∗Tα
4. v := L\k∗
5. V [f∗] := k(x∗,x∗)− vTv
6. log p(y|X) := −1

2y
Tα − ∑

i logLii −
n
2 log 2π

7. return f∗ (mean), V [f∗] (variance),
log p(y|X) (log-marginal likelihood)

2.2 Multiple Kernel Gaussian Process
The heart of every Gaussian process model is a
covariance kernel. The kernel k directly specifies
the covariance between every pair of input points
in the dataset. The particular choice of covari-
ance function determines the properties such as
smoothness, length scales, and amplitude, drawn
from the GP prior. Therefore, it is an important
part of GP modelling to select an appropriate co-
variance function for a particular problem. Multi
Kernel Learning (MKL) — using multiple kernels
instead of a single one — can be useful in two
ways:

• Different kernels correspond to different no-
tions of similarity, and instead of trying to
find which works best, a learning method
does the picking for us, or may use a combi-
nation of them. Using a specific kernel may
be a source of bias which is avoided by allow-
ing the learner to choose from among a set of
kernels.

• Different kernels may use inputs coming
from different representations, possibly from
different sources or modalities.

(Gonen and Alpaydin, 2011; Wilson and Adams,
2013) explain how multiple kernels definitely give
a powerful performance. (Gonen and Alpaydin,
2011) also describes in detail various methodolo-
gies to combine kernels. (Wilson and Adams,
2013) introduces simple closed form kernels that
can be used with Gaussian Processes to discover
patterns and enable extrapolation. The kernels
support a broad class of stationary covariances, but

Gaussian Process inference remains simple and
analytic.

We studied the possibility of using multiple ker-
nels to explain the relation between the input data
and the labels. While there is a body of work on
using Multi Kernel Learning (MKL) on numerical
data and images, yet applying MKL on text is still
an exploration. We have used Exponential kernel
and Multi-Layer Perceptron kernel together with
Squared Exponential kernel, and found the com-
binations to give better results. The text data used
in sentiment analysis is collected over a period of
time. Comments on the same topic may exhibit
different emotions, depending on the time it was
made, and hence their properties, such as smooth-
ness and periodicity, also vary with time. Since
any one kernel learns only certain properties well,
multiple kernels will be effective in detecting the
presence of different emotions in the data.

The MKL algorithms use different learning
methods for determining the kernel combination
function. It is divided into five major categories:
Fixed rules, Heuristic approaches, Optimization
approaches, Bayesian approaches and Boosting
approaches. The combination of kernels in differ-
ent learning methods can be performed in one of
the two basic ways, either using linear combina-
tion or using non-linear combination. Linear com-
bination seems more promising (Gonen and Al-
paydin, 2011), and have two basic categories: un-
weighted sum (i.e., using sum or mean of the ker-
nels as the combined kernel) and weighted sum.
Non-linear combination use non-linear functions
of kernels, namely multiplication, power, and ex-
ponentiation. We have studied the fixed rule linear
combination in this work which can be represented
as

k(x, x′) = k1(x, x′)+k2(x, x′)+. . .+kn(x, x′).
(2)

For training, we have used one-step method to-
gether with the simultaneous approach. One-step
methods, in a single pass, calculate both the pa-
rameters of the combination function, and those
of the combined base learner; and the simultane-
ous approach ensures that both sets of parameters
are learned together.

3 System Overview

The system comprises of the following modules:
data extraction, preprocessing, feature vector gen-
eration, and multi-kernel Gaussian Process model
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building. The algorithm for preprocessing of the
data and feature vector building is outlined below:
Algorithm: Preprocess the data and generate fea-
ture vectors.
Input: Input dataset.
Output: Dictionary with the key - value pair and
BoW Feature vector.
begin

1. Perform lemmatization using WordNet
Lemmatizer from the NLTK tool kit.

2. Perform tokenization using the wordpunct
tokenize function of the NLTK toolkit.

3. Set the integer value for the train variable.
4. Build data dictionaries for training sentences.
5. Build a data dictionary with words mapped to

their indices.
6. Generate feature vectors for the train sets that

encode a BoW representation.
7. Build a dictionary with the key-value pairs.

The key is the emotion and the value is a ma-
trix where rows are BoW vectors.

end
The Multi-Kernel Gaussian Process (MKGP)

model building is outlined in the following algo-
rithm.
Algorithm: Build a Multi-Kernel Gaussian Pro-
cess model.
Input: Input dataset with BoW feature represen-
tation.
Output: Learned model,
begin

1. Split the training dataset into XTrain which
contains the features and YTrain that contains
the emotion scores.

2. Build the initial regression model using ap-
propriate kernel function.

3. Optimize the regression model with the
hyper-parameters (length scale, variance,
noise).

4. Return the learned model.

end
The Multi-Kernel Gaussian Process model is im-
plemented using linear combination method which
takes the unweighted sum of the kernels.

4 Comparison Using Different Kernels

The output submitted for the task was based on the
linear combination of Squared Exponential kernel
and Exponential kernel.

4.1 Kernels
The Squared Exponential (SE) kernel, sometimes
called the Gaussian or Radial Basis Function
(RBF), has become the default kernel in GPs. To
model the long term smooth-rising trend we use a
Squared Exponential covariance term.

k(x, x′) = σ2 exp

(
−(x− x′)2

2l2

)
. (3)

where σ2 is the variance and l is the length-scale.
The usage of Exponential kernel is particularly

common in machine learning and hence is also
used in GPs. They perform tasks such as statis-
tical classification, regression analysis, and cluster
analysis on data in an implicit space.

k(x, x′) = σ2 exp
(
−(x− x′)

2l2

)
(4)

The Multi-Layer Perceptron kernel has also
found use in GP as it can learn the periodicity
property present in the dataset; its k(x, x′) is given
by

2σ2

π
sin−1 (σ2

wx
Tx′ + σ2

b )√
σ2

wx
Tx+ σ2

b + 1
√
σ2

wx
′Tx′σ2

b + 1
(5)

where σ2 is the variance, σ2
w is the vector of the

variances of the prior over input weights and σ2
b

is the variance of the prior over bias parameters.
The kernel can learn more effectively because of
the additional parameters σ2

w and σ2
b .

4.2 Performance Evaluation
Other combinations of the kernel were also tried
after submission. One such kernel used for ex-
perimentation purpose was Multi-Layer Percep-
tion Kernel. The results of the Single Kernel and
Multi-Kernel GP on subtask 1 dataset are collated
in Table 1. The results of the Single Kernel and

Table 1: A performance comparison based on
Cosine Similarity (CS), Pearson Score (PS) and
Mean Absolute Error (MAE) for subtask 1 dataset

Model CS PS MAE

SGP 0.6942 0.6694 0.2003
MKGP(R+E) 0.7044 0.6809 0.1965
MKGP(R+E+M) 0.7099 0.6864 0.1931
MKGP(R+M) 0.7106 0.6872 0.1930

Multi-Kernel GP on subtask 2 dataset are shown
in Table 2. The kernel combinations used in Ta-
ble 1 and Table 2 are
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Table 2: A performance comparison based on
Cosine Similarity (CS), Pearson Score (PS) and
Mean Absolute Error (MAE) for subtask 2 dataset

Model CS PS MAE

SGP 0.5590 0.5615 0.2506
MKGP(R+E) 0.5530 0.5569 0.2558
MKGP(R+E+M) 0.5864 0.5870 0.2445
MKGP(R+M) 0.5931 0.5928 0.2426

SGP: Single Kernel Gaussian Process with Ra-
dial Basis Function (RBF) kernel,

MKGP(R+E): Multi Kernel Gaussian Process
with sum of RBF and Exponential kernels,

MKGP(R+E+M): Multi Kernel Gaussian Process
with sum of RBF, Exponential, and Multi-
Layer Perceptron kernels,

MKGP(R+M): Multi Kernel Gaussian Process
with sum of RBF and Multi-Layer Perceptron
kernels.

The evaluation considered 70% of the dataset for
training and 30% for testing. The greater the Co-
sine Similarity (CS) and the Pearson Score (PS),
and the smaller the Mean Absolute Error (MAE),
the better the performance of the system. The ta-
bles show that MKGP(R+M), Multi Kernel Gaus-
sian Process with sum of Squared Exponential and
Multi-Layer Perceptron kernels, performs better.

5 Official Evaluation

The systems developed were evaluated based on
Cosine Similarity measure. Our system ranked
fifth position with Cosine Similarity of 0.7347 for
subtask 1 and fifteenth position with Cosine Simi-
larity of 0.6657 for subtask 2.

6 Conclusion

In this paper, we have presented a Multi Kernel
Gaussian Process(MKGP) regression model for
fine-grained sentiment analysis of financial mi-
croblogs and news. We used Bag of Words input
feature vectors as input and fixed rule multi ker-
nel learning to build GP model and found it to per-
form better than single kernel learning. The results
can be further enhanced by using different feature
generation approaches and multi kernel learning
approaches.
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