
Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 755–759,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

TwiSe at SemEval-2017 Task 4: Five-point Twitter Sentiment
Classification and Quantification

Georgios Balikas
University of Grenoble Alps, CNRS, Grenoble INP - LIG

georgios.balikas@imag.fr

Abstract

The paper describes the participation of
the team “TwiSE” in the SemEval-2017
challenge. Specifically, I participated at
Task 4 entitled “Sentiment Analysis in
Twitter” for which I implemented systems
for five-point tweet classification (Sub-
task C) and five-point tweet quantification
(Subtask E) for English tweets. In the fea-
ture extraction steps the systems rely on
the vector space model, morpho-syntactic
analysis of the tweets and several sen-
timent lexicons. The classification step
of Subtask C uses a Logistic Regression
trained with the one-versus-rest approach.
Another instance of Logistic Regression
combined with the classify-and-count ap-
proach is trained for the quantification task
of Subtask E. In the official leaderboard
the system is ranked 5/15 in Subtask C and
2/12 in Subtask E.

1 Introduction

Microblogging platforms like Twitter have lately
become ubiquitous, democratizing the way people
publish and access information. This vast amount
of information that reflects the opinions, news or
comments of people creates several opportunities
for opinion mining. Among other platforms, Twit-
ter is particularly popular for research due to its
scale, representativeness and ease of access to the
data it provides. Furthermore, to facilitate the
study of opinion mining, high quality resources
and data challenges are organized. The Task 4 of
the SemEval-2017 challenges, entitled “Sentiment
Analysis in Twitter” is among them.

The paper describes the participation of the
team Twitter Sentiment (TwiSe) in two of the
subtasks of Task 4 of SemEval-2017. Specifically,

I participated in Subtasks C and E. Both of them
assume that sentiment is distributed across a five-
point scale ranging from VeryNegative to VeryPos-
itive. Subtask C is a sentiment classification task,
where given a tweet the aim is to assign one of
the five classes. Subtask E is a quantification task,
whose aim is given a set of tweets referring to a
subject to estimate the prevalence of each of the
five classes. The tasks are described in more detail
at (Rosenthal et al., 2017).

The rest of the paper is organized as follows:
Section 2 describes the feature extraction steps
performed in order to construct the representation
of a tweet, which is the same for both subtasks C
and E. Section 3 details the learning approaches
used and Section 4 summarizes the achieved per-
formance. Finally, Section 5 concludes with point-
ers for future work.

2 Feature Extraction

In this section I describe the details of the feature
extraction process performed. My approach is
heavily inspired by my previous participation
in the “Twitter Sentiment Analysis” task of
SemEval-2016, which is detailed at Balikas and
Amini (2016). Importantly, the code for perform-
ing the feature extraction steps described below
is publicly available at https://github.
com/balikasg/SemEval2016-Twitter_
Sentiment_Evaluation.

There are three sets of features extracted:

1. Word occurrence features,

2. Morpho-syntactic features like counts of
punctuation and part-of-speech (POS) tags,

3. Semantic features based on sentiment lexi-
cons and word embeddings.

755



For the data pre-processing, cleaning and tok-
enization1 as well as for most of the learning steps,
I used Python’s Scikit-Learn (Pedregosa et al.,
2011) and NLTK (Bird et al., 2009).

2.1 Word occurrence and morpho-syntactic
features

Following (Kiritchenko et al., 2014; Balikas and
Amini, 2016) I extract features based on the words
that occur in a tweet. The aim is to describe the
lexical content of the tweets as well as to capture
part of the words order. The latter is achieved us-
ing N -grams, with N > 1. To reduce the di-
mensionality of the representations when using N -
grams, especially with noisy data such as tweets,
I use the hashing trick. Hashing is a fast and
space-efficient way for vectorizing text spans. It
turns arbitrary features into vector indices of pre-
defined size (Weinberger et al., 2009). For ex-
ample, assume that after the vocabulary extraction
step one has a vocabulary of dimensionality 50K.
This would result in a very sparse vector space
model and longer training for a classifier. Feature
hashing can be seen as a dimensionality reduction
process where a hash function given a textual in-
put (vocabulary item) associates it to a number j
within 0 ≤ j ≤ D, where D is the dimension of
the new representation.

The word-occurrence and morpho-syntactic
features I extracted are:

• N -grams with N ∈ [1, 4], projected to 20K-
dimensional space using the hashing func-
tion,2

• character m-grams of dimension m ∈ [4, 5],
that is sequences of characters of length 4 or
5, projected to 25K-dimensional space using
the same hashing function. The sizes of the
output of the hashing function for N -grams
and character m-grams (20K and 25K re-
spectively) were decided using the validation
set. Also, I applied the hashing trick only for
these two types of features,

• # of exclamation marks, # of question marks,
sum of exclamation and question marks, bi-

1We adapted the tokenizer provided at http:
//sentiment.christopherpotts.net/
tokenizing.html

2I used the signed 32-bit version of Murmurhash3 func-
tion, implemented as part of the HashingVectorizer
class of scikit-learn.

nary feature indicating if the last character of
the tweet is a question or exclamation mark,

• # of capitalized words (e.g., GREAT) and # of
elongated words (e.g. coool), # of hashtags in
a tweet,

• # of negative contexts. Negation is important
as it can alter the meaning of a phrase. For
instance, the meaning of the positive word
“great” is altered if the word follows a neg-
ative word e.g. “not great”. We have used
a list of negative words (like “not”) to de-
tect negation. We assumed that words after
a negative word occur in a negative context,
that finishes at the end of the tweet unless
a punctuation symbol occurs before. Notice
that negation also affects the N -gram features
by transforming a word w in a negated con-
text to w NEG,

• # of positive emoticons, # of negative emoti-
cons and a binary feature indicating if emoti-
cons exist in a given tweet, and

• The distribution of part-of-speech (POS) tags
(Gimpel et al., 2011) with respect to posi-
tive and negative contexts, that is how many
verbs, adverbs etc., appear in a positive and
in a negative context in a given tweet.

2.2 Semantic Features
With regard to the sentiment lexicons, I used:

• manual sentiment lexicons: the Bing liu’s
lexicon (Hu and Liu, 2004), the NRC emo-
tion lexicon (Mohammad and Turney, 2010),
and the MPQA lexicon (Wilson et al., 2005),

• # of words in positive and negative context
belonging to the word clusters provided by
the CMU Twitter NLP tool3, # of words be-
longing to clusters obtained using skip-gram
word embeddings,

• positional sentiment lexicons: the sentiment
140 lexicon (Go et al., 2009) and the Hashtag
Sentiment Lexicon (Kiritchenko et al., 2014)

I make, here, more explicit the way I used the
sentiment lexicons, using the Bing Liu’s lexicon
as an example. I treated the rest of the lexicons
similarly, which is inspired by (Kiritchenko et al.,

3http://www.cs.cmu.edu/˜ark/TweetNLP/

756



2014). For each tweet, using the Bing Liu’s lex-
icon I generated a 104-dimensional vector. After
tokenizing the tweet, I count how many words (i)
in positive/negative contexts belong to the posi-
tive/negative lexicons (4 features) and I repeat the
process for the hashtags (4 features). To this point
one has 8 features. I repeat the generation process
of those 8 features for the lowercase words and the
uppercase words. Finally, for each of the 24 POS
tags the (Gimpel et al., 2011) tagger generates, I
count how many words in positive/negative con-
texts belong to the positive/negative lexicon. As a
result, this generates 2 × 8 + 24 × 4 = 104 fea-
tures in total for each tweet based on the sentiment
lexicons.

With respect to the features from text embed-
dings, I opt for cluster-based embeddings inspired
by (Partalas et al., 2016). I used an in-house col-
lection of ∼ 40M tweets collected using the Twit-
ter API between October and November 2016. Us-
ing the skip-gram model as implemented in the
word2vec tool (Mikolov et al., 2013), I generated
word embeddings for each word that appeared in
the collected data more than 5 times. Therefore,
each word is associated with a vector of dimension
D, where I set D = 100, which I did not validate.
Then, using the k-means algorithm I clustered the
learned embeddings, initializing the clusters cen-
troids with k-means++ (Arthur and Vassilvitskii,
2007). Having the result of the clustering step, I
produced binary cluster membership features for
the words of a tweet. For instance, assuming ac-
cess to the results of k-means with k = 50, each
tweet’s representation is augmented with 50 fea-
tures, denoting whether words of the tweet belong
to each of the 50 clusters. The number of the
clusters k in the k-meams algorithm is a hyper-
parameter, which was set to 1, 000 after tuning it
from k ∈ {100, 250, 500, 1000, 1500, 2000}.

3 The Learning Approach

The section describes the learning approach
for Subtasks C and E. For each of them, I
used a Logistic Regression optimized with the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-
rithm from the quasi-newton family of methods,
and in particular its limited-memory (L-BFGS)
approximation (Byrd et al., 1995).4

4From scikit-learn: ‘LogisticRegression(solver=’lbfgs’).

3.1 Fine-grained tweet classification

The output of the concatenation of the represen-
tation learning steps described at Section 2 is a
46,368-dimensional vector, out of which N -grams
and character m-grams correspond to 45K ele-
ments. We normalize each instance using l2 norm
and this corresponds to the vector representation
of the tweets. I train a Logistic Regression as im-
plemented in Scikit-learn (Pedregosa et al., 2011)
using L2 regularization. The hyper-parameter C
that controls the importance of the regularization
term in the optimization problem is selected with
grid-search from C ∈ {10−4, 10−3, . . . , 104}. For
grid-search I used a simple train-validation split,
which is described in the next section. Once the C
parameter is selected, I retrained the Logistic Re-
gression in the union of the instances of the train-
ing and validation sets.

In addition, as shown in Figure 1 (“Class Distri-
bution: Training data”), the classification problem
is unbalanced as the distribution of the examples
across the five sentiment categories is not uniform.
To account for this, I assigned class weights to the
examples when training the Logistic Regression.
The goal is to penalize more misclassification er-
rors in the less frequent classes. The weights are
inversely proportional to the number of instances
of each class.5 This is also motivated by the fact
that the official evaluation measure is the macro-
averaged Mean Absolute Error (MAEM) that is av-
eraged across the different classes and accounts
for the distance between the true and predicted
class. More information about the evaluation met-
rics used can be found at (Rosenthal et al., 2017).

3.2 Fine-grained tweet quantification

While the aim of classification is to assign a cate-
gory to each tweet, the aim of quantification is to
estimate the prevalence of a category to a set of
tweets. Several methods for quantification have
been proposed: I cite for instance the work of
G. Forman on classify and count and probabilistic
classify and count (Forman, 2008) and the recently
proposed ordinal quantification trees (Da San Mar-
tino et al., 2016). In this work, I focus on a classify
and count approach, which simply requires classi-
fying the tweets and then aggregating the classifi-
cation results. The official evaluation measure is
Earth Movers Distance (EMD) averaged over the

5From scikit-learn: ‘LogisticRegression(class weight =
’balanced’).

757



Subtask C & E

Train2016 5,482
Development2016 1,810
DevTest2016 1,778
Test2016 20,632
Test2017 12,137

Table 1: Size of the data used for training and de-
velopment purposes. We only relied on the Se-
mEval 2016 datasets.

Subtask C Subtask E
Team Score Team Score

BB twtr 0.4811 BB twtr 0.245
DataStories 0.5552 TwiSe 0.269
Amobee-C-137 0.5993 funSentiment 0.273
Tweester 0.6234 ELiRF-UPV 0.306
TwiSe 0.6400 NRU-HSE 0.317

Table 2: Top-5 systems ranks for Subtask C based
on MAEM and of Subtask E based on EMD.

subjects of the data, described in detail at (Rosen-
thal et al., 2017).

The classification and the quantification meth-
ods I use rely on efficient operations in terms of
memory (hashing) and computational resources
(linear models). The feature extraction and learn-
ing operations are naturally parallellizable. I be-
lieve that this is an important advantage, as the
end-to-end system is robust and fast to train.

4 The Experimental Framework

The data Table 1 shows the data released by the
task organizers. To tune the hyper-parameters of
my models, I used a simple validation mecha-
nism: I concatenated the “Train2016”, “Devel-
opment2016”, and “DevTest2016” (9,070 tweets
totally) to use them as training and I left the
“Test2016” as validation data. I acknowledge that
using the “Test2016” part of the data only for val-
idation purposes may be limiting in terms of the
achieved performance, since these data could have
also used to train the system. I also highlight that
by using more elaborate validation strategies like
using the subjects of the tweets, one should be able
to achieve better results for tuning.

Official Rankings Table 2 shows the perfor-
mance the systems achieved. There are two main
observations. For Subtask C, where TwiSe is
ranked 5th, I note that the system is a slightly
improved version of the system of (Balikas and
Amini, 2016), ranked first in the Subtask in the
2016 edition. The only difference is the addition

VeryNegative

VeryNegative

Negative

Negative
Neutral

Neutral

Positive
Positive

VeryPositive

VeryPositive
0.0

0.1

0.2

0.3

0.4

0.5

0.6

F
re

q
.

0.015

0.120

0.295

0.509

0.061
0.014

0.286

0.500

0.188

0.011

Class Distribution: Training Data
Class Distribution: Test Data

Figure 1: The distribution of the instances in the
training and test sets among the five sentiment
classes. The figure is rendered better with color.

of the extra features from clustering the word em-
beddings. This entails that significant progress
was made to the task, which is either due to the
extra data (“Test2016” we only used for valida-
tion) or more efficient algorithms. On the other
hand, TwiSe is ranked 2nd in Subtask E. This,
along with the simplicity of the approach used that
is based on aggregating the counts of the classifi-
cation step, entails that there is more work to be
done in this direction.

Five-Scale Classification: Error Analysis An-
alyzing the classification errors, one finds out
that the (macro-averaged) mean-absolute-error
per sentiment category is distributed as follows:
VeryNegative: 0.836, Negative: 0.566, Neutral:
0.584, Positive: 0.771, VeryPositive: 0.443. The
system performed the best in the VeryPositive class
(lowest error) and the worst in the VeryNegative
class. Interestingly, the system did not do as well
in the Positive class. To better understand why,
Figure 1 plots the distribution of the instances
across the five sentiment classes, for the training
data we used and the test data. Notice how the
Positive class is the dominant in the training data,
while this changes in the test data. I believe that
that the distribution drift, between the training and
test data is indicative as of why the system per-
formed poorly in the “Positive” class.

Five-Scale Quantification: Error Analysis I
repeat, here, the error analysis process for the
quantification task. The best performance was
achieved in the subject “leonard cohen”, whose
EMD was 0.029 while the worst performance in
the topics “maduro” (EMD=0.709) and “medi-
caid” (EMD=0.660). The distribution of sentiment
for “leonard cohen” is very similar to the distri-
bution of sentiment in the training set, Kullback-
Leibner divergence of 0.140. On the other hand
the Kullback-Leibner divergence for “maduro”

758



and “medicaid”, which are both skewed towards
the negative sentiment, are 1.328 and 0.896 re-
spectively. Although a more detailed error analy-
sis is required in order to improve the performance
of the system, I believe that the distribution drift
between the training examples and the examples
of a subject plays an important role. This may be
further enhanced by the fact I used a classify and
count approach which does not account for drifts.

5 Conclusion

The paper described the participation of TwiSe
in the subtasks C and E of of the “Twitter Sen-
timent Evaluation” Task of SemEval-2017. Im-
portantly, my system was ranked 2nd in Subtask
E, “Five-point Sentiment Quantification” using a
simple classify and count approach on top of a Lo-
gistic Regression. An interesting future work di-
rection towards improving the system aims at bet-
ter handling distribution drifts between the train-
ing and test data.

References
David Arthur and Sergei Vassilvitskii. 2007. k-

means++: The advantages of careful seeding. In
Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms. Society for In-
dustrial and Applied Mathematics, pages 1027–
1035.

Georgios Balikas and Massih-Reza Amini. 2016.
Twise at semeval-2016 task 4: Twitter sentiment
classification. In SemEval@NAACL-HLT 2016, San
Diego, CA, USA, June 16-17, 2016. pages 85–91.

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly Media.

Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and
Ciyou Zhu. 1995. A limited memory algorithm for
bound constrained optimization. SIAM J. Scientific
Computing 16(5):1190–1208.

Giovanni Da San Martino, Wei Gao, and Fabrizio Se-
bastiani. 2016. Ordinal text quantification. In Pro-
ceedings of the 39th International ACM SIGIR con-
ference on Research and Development in Informa-
tion Retrieval. ACM, pages 937–940.

George Forman. 2008. Quantifying counts and costs
via classification. Data Mining and Knowledge Dis-
covery 17(2):164–206.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A Smith. 2011. Part-of-speech tagging

for twitter: Annotation, features, and experiments.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies: short papers-Volume 2. As-
sociation for Computational Linguistics, pages 42–
47.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N Project Report, Stanford 1:12.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM, pages 168–
177.

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M Mo-
hammad. 2014. Sentiment analysis of short infor-
mal texts. Journal of Artificial Intelligence Research
pages 723–762.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR abs/1301.3781.

Saif M Mohammad and Peter D Turney. 2010. Emo-
tions evoked by common words and phrases: Us-
ing mechanical turk to create an emotion lexicon.
In Proceedings of the NAACL HLT 2010 workshop
on computational approaches to analysis and gen-
eration of emotion in text. Association for Computa-
tional Linguistics, pages 26–34.

Ioannis Partalas, Cédric Lopez, Nadia Derbas, and
Ruslan Kalitvianski. 2016. Learning to search for
recognizing named entities in twitter. WNUT 2016
page 171.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research
12:2825–2830.

Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017.
SemEval-2017 task 4: Sentiment analysis in Twit-
ter. In Proceedings of the 11th International Work-
shop on Semantic Evaluation. Association for Com-
putational Linguistics, Vancouver, Canada, SemEval
’17.

Kilian Weinberger, Anirban Dasgupta, John Langford,
Alex Smola, and Josh Attenberg. 2009. Feature
hashing for large scale multitask learning. In Pro-
ceedings of the 26th Annual International Confer-
ence on Machine Learning. ACM, pages 1113–
1120.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. In Proceedings of the con-
ference on human language technology and empiri-
cal methods in natural language processing. Associ-
ation for Computational Linguistics, pages 347–354.

759


