
Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 683–688,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

NRU-HSE at SemEval-2017 Task 4: Tweet Quantification Using Deep
Learning Architecture

Nikolay Karpov

National Research University Higher School of Economics

25/12 Bolshaja Pecherskaja str. 603155
Nizhny Novgorod, Russia

nkarpov@hse.ru

Abstract

In many areas, such as social science,
politics or market research, people need to
deal with dataset shifting over time. Dis-
tribution drift phenomenon usually ap-
pears in the field of sentiment analysis,
when proportions of instances are chang-
ing over time. In this case, the task is to
correctly estimate proportions of each sen-
timent expressed in the set of documents
(quantification task). Basically, our study
was aimed to analyze the effectiveness of
a mixture of quantification technique with
one of deep learning architecture. All the
techniques are evaluated using the
SemEval-2017 Task4 dataset and source
code, mentioned in this paper and availa-
ble online in the Python programming
language. The results of an application of
the quantification techniques are dis-
cussed.

1 Introduction

A traditional classification task is often based on
the assumption that data for training a classifier
represent test data. But in many areas, such as
customer-relationship management or opinion
mining, people need to deal with dataset shift or
population drift phenomenon. The simplest type
of dataset shift is when training set and test set
vary only in the distribution of the classes of the
instances aka distribution drift. If we would like
to measure this variation, the task of accurate
classification of each item is replaced by the task
of providing accurate proportions of instances
from each class (quantification). George Forman
suggested defining the ‘quantification task’ as
finding the best estimate for the amount of cases

in each class in a test set, using a training set with
a substantially different class distribution (For-
man, 2008).

Application of the quantification approach in
opinion mining (Esuli et al., 2010), network-
behavior analysis (Tang et al., 2010), word-sense
disambiguation (Chan and Ng, 2006), remote
sensing (Guerrero-Curieses et al., 2009), quality
control (Sánchez et al., 2008), monitoring support-
call logs (Forman et al., 2006) and credit scoring
(Hand and others, 2006) showed high perfor-
mance even with a relatively small training set.

Although quantification techniques are able to
provide accurate sentiment analysis of proportions
in situations of distribution drift, the question of
an optimal technique for analysis of tweets still
raises a lot of questions. It is worth mentioning
that sentiment analysis of tweets presents addi-
tional challenges to natural language processing,
because of the small amount of text (less than 140
characters in each document), usage of creative
spelling (e.g. “happpyyy”, “some1 yg bner2
tulus”), abbreviations (such as “wth” or “lol”), in-
formal constructions (“hahahaha yava quiet so
!ma I m bored av even home nw”) and hashtags
(BREAKING: US GDP growth is back! #kid-
ding), which are a type of tagging for Twitter mes-
sages.

We participated in D and E subtasks of the
tweet sentiment quantification competition
SemEval-2017 Task 4. To solve them we used a
quantification method, which showed good accu-
racy last year (Karpov et al., 2016) and deep
learning architecture mentioned in literature for
text classification task.

The paper is organized as follows. In Section 2,
we first look at the notation, then we briefly over-
view a method to solve the quantification prob-
lem. Section 3 describes a deep learning architec-

683

ture and approach to train our network. In Section
4 we show an experiment methodology. Section 5
describes the results of our experiments, while
Section 6 concludes the work defining open re-
search issues for further investigation.

2 Quantification Method

In this section, we describe methods used to han-
dle changes in class distribution.

First, let us give some definition of notation.
Х: vector representation of observation x;
C = {c1, …, cn}: classes of observations, where n
is the number of classes;

�� (c): a true a priori probability (aka “preva-
lence” of class c in the set S;

�� (cj): estimated prevalence of cj using the set S;

��
�(cj): estimated �� (cj) obtained via method M;

p(cj /x): a posteriori probability to classify an ob-
servation x to the class cj;
�����, ����: training and test sets of observa-
tions, respectively;
�����: a subset of ����set where each observa-
tion falls within class �;
����_��= {pTEST(ci)}; i=1, ������: class probability
distribution of the test set;
�����_�� = {pTRAIN(ci)}; i=1, ������: class probabil-
ity distribution of the training set;

The problem we study has some training set,
which provides us with a set of labeled examples
– TRAIN, with class distribution TRAIN_CD. At
some point, the distribution of data changes to a
new, but unknown class distribution –
TEST_CD, and this distribution provides a set of
unlabeled examples – TEST. Given this termi-
nology, we can state our quantification problem
more precisely.

2.1 Expectation Maximization

A simple procedure to adjust the outputs of a clas-
sifier to a new a priori probability is described in
the study by (Saerens et al., 2002).

 �(��/��) =

� ��������

� ���������
��(��/��)

∑
� ��������

� ���������
��(��/��)�

���

 (1)

It is important that authors suggest using not
only a well-known formula (1) to compute the
corrected a posteriori probabilities, but also an it-
erative procedure to adjust the outputs of the
trained classifier with respect to these new a pri-
ori probabilities, without having to refit the mod-

el, even when these probabilities are not known
in advance.

To make the Expectation Maximization (EM)
method clear, we specify its algorithm in Figure1
using a pseudo-code. The algorithm begins with
counting start values for class probability distri-
bution, using labels on the training set TRAIN
(line 1), then builds an initial classifier C_i from
the TRAIN set (line 2) and classifies each item in
the unlabeled TEST set (line3), where the
classify functions return the a posteriori
probabilities (TEST_prob) for the specified da-
tasets. The algorithm then iterates in lines 4-9
until the maximum number of iterations
(maxIterations) is reached. In this loop, the
algorithm first uses the previous a posteriori
probabilities TEST_prob to estimate a new a pri-
ori probability (line 6). Then, in line 7, a posteri-
ori probabilities are computed using Equation
(1). Finally, once the loop terminates, the last a
posteriori probabilities return (line 9).
EM (TRAIN, TEST)

1.TEST_CD = prevalence(TRAIN)
2.C_i = build_clf(TRAIN)
3.TEST_prob = classify(C_i, TEST)
4.for (i=1; i<maxIterations; i++)
5.{
6.TEST_CD = prevalence(TEST_prob)
7.TEST_prob=bayes(TEST_CD,
TEST_prob)
8.}
9.return TEST_CD

Figure 1: Pseudo-code for the EM algorithm.

To build a classifier in the function
build_clf, we use support vector machines
(SVM) with a linear kernel.

2.2 Iterative Class Distribution Estimation

Another interesting method is iterative cost-
sensitive class distribution estimation (CDE-
Iterate) described in the study by (Xue and
Weiss, 2009).

The main idea of this method is to retrain a
classifier at each iteration, where the iterations
progressively improve the quantification accura-
cy of performing the «classify and count» meth-
od via generated cost-sensitive classifiers.

For the CDE-based method, the final preva-
lence is induced from the TRAIN labeled set
with the cost of classes COST. The COST value
is computed with Equation (2), utilizing the class
distribution calculated during the previous step
TEST_CD. For each iteration, we recalculate:

684

 ���� =
����_��

�����_��
 (2)

The CDE-Iterate algorithm is specified in Fig-
ure 2, using the pseudo-code. The algorithm be-
gins with counting the class distribution
TRAIN_CD for training labels TRAIN (line 1).
Then it builds an initial classifier C_i from the
TRAIN set (line 2). In a loop, this algorithm uses
the previous classifier C_i to classify the unla-
beled TEST set by estimating a posterior proba-
bility TEST_prob for each item in a test set
(line 5). Then in line 6, the a priory probability
distribution is computed and the cost ratio infor-
mation is updated (line 7). In line 8, a new cost-
sensitive classifier C_i is generated using the
TRAIN set with the updated cost ratio COST.
The algorithm then iterates in lines 4-9 until the
maximum number of iterations
(maxIterations) is reached. Finally, once
the loop terminates, the last a priory probability
distribution of classes is returned TEST_CD (line
10).

CDE-Iterate(TRAIN, TEST, COST_start)

1. TRAIN_CD = prevalence(TRAIN)
2. C_i = build_clf(TRAIN,
COST_start)
3. for (i=1; i<maxIterations; i++)
4. {
5. TEST_prob= classify(C_i, TEST)
6. TEST_CD = prevalence(TEST_prob)
7. COST = TEST_CD/TRAIN_CD
8. C_i = build_clf(TRAIN, COST)
9. }
10.return TEST_CD

Figure 2: Pseudo-code for the CDE-Iterate algorithm.

Last year we did not find any open library
where baseline quantification methods were im-
plemented. We, therefore, shared all the algo-
rithms, which we had programmed using the Py-
thon language, on the Github repository1. We be-
lieve that this library can help to pool infor-
mation on quantification.

3 Deep Learning Architecture

As the classifier for quantification algorithm, we
used a neural network with traditional architec-
ture for text classification task. In this section,
we briefly describe our choice of architecture, a
regularization method and a training algorithm.

1https://github.com/Arctickirillas/Rubrication

3.1 Pre-trained Embedding Layer

The organizers provided a dataset of messages of
SemEval Task4 since 2013 till 2016. But it still
contained not so many samples to effectively
train deep architecture. Therefore, we additional-
ly used weekly labeled Sentiment140 corpus of
tweets, (Go et al., 2009), to pre-train our network
so as to learn semantic and sentiment specific
representation of words and phrases.

A sequence of words of the input tweet maps
to the corresponding real-valued vectors by the
embedding layer. The length of its vector is
called the dimension of the embeddings. To find
out good embeddings we utilize GenSim2 to pre-
trained CBOW model for vectors with a dimen-
sionality of 300. We choose these over the
CBOW embeddings trained on Twitter data be-
cause of the higher dimensionality, considerably
larger training corpus and vocabulary of unique
words.

Word vectors from GenSim used as a starting
point and they have updated during network
training by back-propagating the classification
errors.

3.2 Recurrent layers

Recurrent layers are proved to be useful in han-
dling variable length sequences (Tang et al.,
2015). We use two series-connected long short-
term memory (LSTM) cells to compute continu-
ous representations of tweets with semantic
composition.

Figure 3: Neural network structure.

3.3 Regularization

We use dropout as the regularizer to prevent our
network from overfitting (Srivastava, 2013). Our

2http://radimrehurek.com/gensim/

Loss Layer

Fully Connected Layer

Dropout Layer

LSTM Layer

LSTM Layer

Embedding Layer

685

dropout layer selects a half of the hidden units at
random and sets their output to zero and thus
prevents co-adaptation of the features.

3.4 Training algorithm

The Sentiment140 dataset and all messages from
SemEval Task4 competition since 2013 till 2016
were used (except sarcasm dataset) to pre-train
neural network layers. Then we fine tuned them
on the train subsets for extract subtask. We used
Adam method for stochastic optimization of an
objective function.

4 Experiment Methodology

This section describes our experimental setup for
participation in the SemEval-2017 Task 4 called
“Sentiment Analysis in Twitter”. Task 4 consists
of five subtasks, but we only participated in top-
ic-based message polarity quantification – sub-
tasks D, E according to a two-point scale and
five-point scale, respectively. Its dataset consists
of Twitter messages (aka observations) divided
into several topics. These subtasks are evaluated
independently for different topics, and the final
result is counted as an average of evaluation
measure out of all the topics (Rosenthal et al.,
2017).

For the quantification algorithm described in
Section 2, we need to build a cost-sensitive clas-
sifier in the function build_clf.

4.1 Approach 2016

Last year we tried few cost-sensitive classifiers
and finally chose a fast logistic regression classi-
fier.

Since observation x in this dataset is a mes-
sage written in a natural language, we first need
to transform it to a vector representation X.
Based on a study by (Gao and Sebastiani, 2015),
we choose the following components of the fea-
ture vector:
 TF-IDF for word n-grams with n varies

from 1 to 4

 TF-IDF character n-grams where n varies
from 3 to 5.

A feature vector is extracted with a
Scikit_Learn tool3. We also perform data prepro-
cessing. Several text patterns (e.g. links, emoti-

3http://scikit-
learn.org/stable/modules/generated/sklearn.feature_extractio
n.text.TfidfVectorizer.html

cons, and numbers) were replaced with their sub-
stitutes. For word n-grams we apply lemmatiza-
tion using WordNetLemmatizer.

It is interesting to characterize messages using
the SentiWordNet library. For each token xi in
document X we obtain its polarity value from the
SentiWordNet. First, we recognize the part of
speech using a speech tagger from the NLTK li-
brary (Bird et al., 2009). Second, we get the
SentiWordNet first polarity value for this token
using the part of speech information.

The organizers provide a default split of the
SemEval2016 data into training, development,
development-time testing and testing datasets.
The algorithms evaluation is performed using
these subsets. The training, development and de-
velopment-time testing subsets are used as a
TRAIN set. The testing subset is used as a TEST
set.

4.2 Approach 2017

This year we try to apply neural network as a
cost-sensitive classifier.

We remove punctuations from input text mes-
sage. Then we split tweets into words and trans-
form them into a sequence of word index with
fixed length. All preprocessing is performed us-
ing Keras4 library with Tensor Flow backend.
We do not apply character sequences and lem-
matization or stemming of words. As a TRAIN
set, we use all datasets provided by organizers of
topic-based message polarity challenge.

The chosen parameters of our network are as
follows: the maximum input sequence length is
set to 30, vocabulary size is 300000, the dimen-
sionality of word embedding is 300, LSTM units
hidden state vector size is 64, two LSTM layers
and dropout of 50% while training. We use the
dense layer with output dimension equals to one
for subtask D and five for subtask E with sig-
moid activation.

The metrics that we use to evaluate the classi-
fier performance are described in (Rosenthal et
al., 2017) and are not described here.

5 Experiment Results

The results of five point scale subtask are shown
in Table 1. During the development period, we
compare our system with last year one on the last
year dataset. New system produced an EMD

4https://keras.io

686

measure of 0.347 while last year system was
slightly better - 0.334. We explain this by the
fact that dataset for network fine-tuning was rela-
tively small last year. This year training dataset
is three times bigger, that is why we decide to
submit results from the new version of the algo-
rithm.

EMD of our new system on the new dataset is
0.317 while the best system scored 0.245.

Settings EMD

Approach and dataset 2017 0.317 (5)

Approach 2017, dataset 2016 0.347

Approach and dataset 2016 0.334 (4)

Table 1: Results of Task 4E.

The results of two-point scale subtask are shown in

Table 2. Our algorithm shows KLD equals to 0.078
while the best system is 0.036.

Settings KLD RAE

Approach and dataset 2017 0.078 (8) 1.528 (8)

Approach and dataset 2016 0.084 (7) 0.767 (4)

Table 2: Results of Task 4D.

6 Conclusion and future work

The aim of this research was to try to solve sen-
timent quantification task with deep learning ar-
chitecture. We compared our deep learning ap-
proach used this year with an approach without
deep learning used last year.

For tweet quantification on a five-point scale
(Subtask E) and a two-point scale (Subtask D),
we used the same iterative method proposed by
(Xue and Weiss, 2009). As a classifier we used
deep learning network which was retrained on
the big corpus and fine tune on the small. These
approaches showed the 5-th and the 8-th best
places in the competition subtasks E and D re-
spectively.

In our future work, we are planning to move in
two directions. First, we plan to apply new deep
architecture and pre-train it using more data. Se-
cond, we want to explore the bias property of the
CDE-Iterate quantification method.

Acknowledgments

The reported study was funded by RFBR under
research Project No. 16-06-00184 A, the Aca-
demic Fund Program at the National Research
University Higher School of Economics (HSE)
in 2017 (grant N17-05-0007) and by the Russian
Academic Excellence Project "5-100".

References

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python.
O’Reilly Media, Inc.

Yee Seng Chan and Hwee Tou Ng. 2006. Estimating
class priors in domain adaptation for word sense
disambiguation. In Proceedings of the 21st Inter-
national Conference on Computational Linguistics
and the 44th annual meeting of the Association for
Computational Linguistics, pages 89–96. Associa-
tion for Computational Linguistics.

Andrea Esuli, Fabrizio Sebastiani, and Ahmed
ABBASI. 2010. Sentiment quantification. IEEE in-
telligent systems, 25(4):72–79.

George Forman. 2008. Quantifying counts and costs
via classification. Data Mining and Knowledge
Discovery, 17(2):164–206, June.

George Forman, Evan Kirshenbaum, and Jaap
Suermondt. 2006. Pragmatic text mining: minimiz-
ing human effort to quantify many issues in call
logs. In Proceedings of the 12th ACM SIGKDD in-
ternational conference on Knowledge discovery
and data mining, pages 852–861. ACM.

Wei Gao and Fabrizio Sebastiani. 2015. Tweet Senti-
ment: From Classification to Quantification. In
Proceedings of the 2015 IEEE/ACM International
Conference on Advances in Social Networks Anal-
ysis and Mining 2015, pages 97–104. ACM.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervi-
sion. CS224N Project Report, Stanford, 1(12).

A. Guerrero-Curieses, R. Alaiz-Rodriguez, and J. Cid-
Sueiro. 2009. Cost-sensitive and modular land-
cover classification based on posterior probability
estimates. International Journal of Remote Sens-
ing, 30(22):5877–5899.

David J. Hand and others. 2006. Classifier technology
and the illusion of progress. Statistical science,
21(1):1–14.

Nikolay Karpov, Alexander Porshnev, and Kirill
Rudakov. 2016. NRU-HSE at SemEval-2016 Task
4: Comparative Analysis of Two Iterative Methods
Using Quantification Library. In Proceedings of
the 10th International Workshop on Semantic
Evaluation (SemEval-2016), pages 171–177, San
Diego, California, June. Association for Computa-
tional Linguistics.

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017. SemEval-2017 Task 4: Sentiment Analysis
in Twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation, Vancouver,
Canada, August. Association for Computational
Linguistics.

687

Marco Saerens, Patrice Latinne, and Christine
Decaestecker. 2002. Adjusting the outputs of a
classifier to new a priori probabilities: a simple
procedure. Neural computation, 14(1):21–41.

Lidia Sánchez, Víctor González, Enrique Alegre, and
Rocío Alaiz. 2008. Classification and quantifica-
tion based on image analysis for sperm samples
with uncertain damaged/intact cell proportions. In
Image Analysis and Recognition, pages 827–836.
Springer.

Nitish Srivastava. 2013. Improving neural networks
with dropout. phdthesis, University of Toronto.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Document
Modeling with Gated Recurrent Neural Network
for Sentiment Classification. In EMNLP, pages
1422–1432.

Lei Tang, Huiji Gao, and Huan Liu. 2010. Network
quantification despite biased labels. In Proceedings
of the Eighth Workshop on Mining and Learning
with Graphs, pages 147–154. ACM.

Jack Chongjie Xue and Gary M Weiss. 2009. Quanti-
fication and semi-supervised classification methods
for handling changes in class distribution. In Pro-
ceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data min-
ing, pages 897–906. ACM.

688

