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Abstract 

In many areas, such as social science, 
politics or market research, people need to 
deal with dataset shifting over time. Dis-
tribution drift phenomenon usually ap-
pears in the field of sentiment analysis, 
when proportions of instances are chang-
ing over time. In this case, the task is to 
correctly estimate proportions of each sen-
timent expressed in the set of documents 
(quantification task). Basically, our study 
was aimed to analyze the effectiveness of 
a mixture of quantification technique with 
one of deep learning architecture. All the 
techniques are evaluated using the 
SemEval-2017 Task4 dataset and source 
code, mentioned in this paper and availa-
ble online in the Python programming 
language. The results of an application of 
the quantification techniques are dis-
cussed. 

1 Introduction 

A traditional classification task is often based on 
the assumption that data for training a classifier 
represent test data. But in many areas, such as 
customer-relationship management or opinion 
mining, people need to deal with dataset shift or 
population drift phenomenon. The simplest type 
of dataset shift is when training set and test set 
vary only in the distribution of the classes of the 
instances aka distribution drift. If we would like 
to measure this variation, the task of accurate 
classification of each item is replaced by the task 
of providing accurate proportions of instances 
from each class (quantification). George Forman 
suggested defining the ‘quantification task’ as 
finding the best estimate for the amount of cases 

in each class in a test set, using a training set with 
a substantially different class distribution (For-
man, 2008). 

Application of the quantification approach in 
opinion mining (Esuli et al., 2010), network-
behavior analysis (Tang et al., 2010), word-sense 
disambiguation (Chan and Ng, 2006), remote 
sensing (Guerrero-Curieses et al., 2009), quality 
control (Sánchez et al., 2008), monitoring support-
call logs (Forman et al., 2006) and credit scoring 
(Hand and others, 2006) showed high perfor-
mance even with a relatively small training set. 

Although quantification techniques are able to 
provide accurate sentiment analysis of proportions 
in situations of distribution drift, the question of 
an optimal technique for analysis of tweets still 
raises a lot of questions. It is worth mentioning 
that sentiment analysis of tweets presents addi-
tional challenges to natural language processing, 
because of the small amount of text (less than 140 
characters in each document), usage of creative 
spelling (e.g. “happpyyy”, “some1 yg bner2 
tulus”), abbreviations (such as “wth” or “lol”), in-
formal constructions (“hahahaha yava quiet so 
!ma I m bored av even home nw”) and hashtags 
(BREAKING: US GDP growth is back! #kid-
ding), which are a type of tagging for Twitter mes-
sages. 

We participated in D and E subtasks of the 
tweet sentiment quantification competition 
SemEval-2017 Task 4. To solve them we used a 
quantification method, which showed good accu-
racy last year (Karpov et al., 2016) and deep 
learning architecture mentioned in literature for 
text classification task. 

The paper is organized as follows. In Section 2, 
we first look at the notation, then we briefly over-
view a method to solve the quantification prob-
lem. Section 3 describes a deep learning architec-
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ture and approach to train our network. In Section 
4 we show an experiment methodology. Section 5 
describes the results of our experiments, while 
Section 6 concludes the work defining open re-
search issues for further investigation. 

2 Quantification Method 

In this section, we describe methods used to han-
dle changes in class distribution.  

First, let us give some definition of notation. 
Х: vector representation of observation x; 
C = {c1, …, cn}: classes of observations, where n 
is the number of classes; 

�� (c): a true a priori probability (aka “preva-
lence” of class c in the set S; 

�� (cj): estimated prevalence of cj using the set S; 

��
�(cj): estimated �� (cj) obtained via method M; 

p(cj /x): a posteriori probability to classify an ob-
servation x  to the class cj; 
�����, ����: training and test sets of observa-
tions, respectively; 
�����: a subset of ����set where each observa-
tion falls within class �; 
����_��= {pTEST(ci)}; i=1, ������: class probability 
distribution of the test set; 
�����_�� = {pTRAIN(ci)}; i=1, ������: class probabil-
ity distribution of the training set; 

The problem we study has some training set, 
which provides us with a set of labeled examples 
– TRAIN, with class distribution TRAIN_CD. At 
some point, the distribution of data changes to a 
new, but unknown class distribution – 
TEST_CD, and this distribution provides a set of 
unlabeled examples – TEST. Given this termi-
nology, we can state our quantification problem 
more precisely. 

2.1 Expectation Maximization 

A simple procedure to adjust the outputs of a clas-
sifier to a new a priori probability is described in 
the study by (Saerens et al., 2002). 

 �(��/��) =

� ��������

� ���������
��(��/��)

∑
� ��������

� ���������
��(��/��)�

���

 (1) 

It is important that authors suggest using not 
only a well-known formula (1) to compute the 
corrected a posteriori probabilities, but also an it-
erative procedure to adjust the outputs of the 
trained classifier with respect to these new a pri-
ori probabilities, without having to refit the mod-

el, even when these probabilities are not known 
in advance. 

To make the Expectation Maximization (EM) 
method clear, we specify its algorithm in Figure1 
using a pseudo-code. The algorithm begins with 
counting start values for class probability distri-
bution, using labels on the training set TRAIN 
(line 1), then builds an initial classifier C_i from 
the TRAIN set (line 2) and classifies each item in 
the unlabeled TEST set (line3), where the 
classify functions return the a posteriori 
probabilities (TEST_prob) for the specified da-
tasets. The algorithm then iterates in lines 4-9 
until the maximum number of iterations 
(maxIterations) is reached. In this loop, the 
algorithm first uses the previous a posteriori 
probabilities TEST_prob to estimate a new a pri-
ori probability (line 6). Then, in line 7, a posteri-
ori probabilities are computed using Equation 
(1). Finally, once the loop terminates, the last a 
posteriori probabilities return (line 9). 
EM (TRAIN, TEST) 

1.TEST_CD = prevalence(TRAIN) 
2.C_i = build_clf(TRAIN) 
3.TEST_prob = classify(C_i, TEST) 
4.for (i=1; i<maxIterations; i++) 
5.{ 
6.TEST_CD = prevalence(TEST_prob) 
7.TEST_prob=bayes(TEST_CD, 
TEST_prob) 
8.} 
9.return TEST_CD 

Figure 1: Pseudo-code for the EM algorithm. 
 

To build a classifier in the function 
build_clf, we use support vector machines 
(SVM) with a linear kernel. 

2.2 Iterative Class Distribution Estimation 

Another interesting method is iterative cost-
sensitive class distribution estimation (CDE-
Iterate) described in the study by (Xue and 
Weiss, 2009). 

The main idea of this method is to retrain a 
classifier at each iteration, where the iterations 
progressively improve the quantification accura-
cy of performing the «classify and count» meth-
od via generated cost-sensitive classifiers. 

For the CDE-based method, the final preva-
lence is induced from the TRAIN labeled set 
with the cost of classes COST. The COST value 
is computed with Equation (2), utilizing the class 
distribution calculated during the previous step 
TEST_CD. For each iteration, we recalculate: 
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 ���� =
����_��

�����_��
 (2) 

The CDE-Iterate algorithm is specified in Fig-
ure 2, using the pseudo-code. The algorithm be-
gins with counting the class distribution 
TRAIN_CD for training labels TRAIN (line 1). 
Then it builds an initial classifier C_i from the 
TRAIN set (line 2). In a loop, this algorithm uses 
the previous classifier C_i to classify the unla-
beled TEST set by estimating a posterior proba-
bility TEST_prob for each item in a test set 
(line 5). Then in line 6, the a priory probability 
distribution is computed and the cost ratio infor-
mation is updated (line 7). In line 8, a new cost-
sensitive classifier C_i is generated using the 
TRAIN set with the updated cost ratio COST. 
The algorithm then iterates in lines 4-9 until the 
maximum number of iterations 
(maxIterations) is reached. Finally, once 
the loop terminates, the last a priory probability 
distribution of classes is returned TEST_CD (line 
10). 
 
CDE-Iterate(TRAIN, TEST, COST_start) 

1. TRAIN_CD = prevalence(TRAIN) 
2. C_i = build_clf(TRAIN, 
COST_start) 
3. for (i=1; i<maxIterations; i++) 
4. { 
5.  TEST_prob= classify(C_i, TEST) 
6.  TEST_CD = prevalence(TEST_prob) 
7.  COST = TEST_CD/TRAIN_CD 
8.  C_i = build_clf(TRAIN, COST) 
9. } 
10.return TEST_CD 

Figure 2: Pseudo-code for the CDE-Iterate algorithm. 
 

Last year we did not find any open library 
where baseline quantification methods were im-
plemented. We, therefore, shared all the algo-
rithms, which we had programmed using the Py-
thon language, on the Github repository1. We be-
lieve that this library can help to pool infor-
mation on quantification. 

3 Deep Learning Architecture 

As the classifier for quantification algorithm, we 
used a neural network with traditional architec-
ture for text classification task. In this section, 
we briefly describe our choice of architecture, a 
regularization method and a training algorithm. 

                                                     
                                                      
1https://github.com/Arctickirillas/Rubrication 

3.1 Pre-trained Embedding Layer 

The organizers provided a dataset of messages of 
SemEval Task4 since 2013 till 2016. But it still 
contained not so many samples to effectively 
train deep architecture. Therefore, we additional-
ly used weekly labeled Sentiment140 corpus of 
tweets, (Go et al., 2009), to pre-train our network 
so as to learn semantic and sentiment specific 
representation of words and phrases. 

A sequence of words of the input tweet maps 
to the corresponding real-valued vectors by the 
embedding layer. The length of its vector is 
called the dimension of the embeddings. To find 
out good embeddings we utilize GenSim2 to pre-
trained CBOW model for vectors with a dimen-
sionality of 300. We choose these over the 
CBOW embeddings trained on Twitter data be-
cause of the higher dimensionality, considerably 
larger training corpus and vocabulary of unique 
words. 

Word vectors from GenSim used as a starting 
point and they have updated during network 
training by back-propagating the classification 
errors. 

3.2 Recurrent layers 

Recurrent layers are proved to be useful in han-
dling variable length sequences (Tang et al., 
2015). We use two series-connected long short-
term memory (LSTM) cells to compute continu-
ous representations of tweets with semantic 
composition.  

 
Figure 3: Neural network structure. 

3.3 Regularization 

We use dropout as the regularizer to prevent our 
network from overfitting (Srivastava, 2013). Our 

                                                     
                                                      
2http://radimrehurek.com/gensim/ 
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dropout layer selects a half of the hidden units at 
random and sets their output to zero and thus 
prevents co-adaptation of the features. 

3.4 Training algorithm 

The Sentiment140 dataset and all messages from 
SemEval Task4 competition since 2013 till 2016 
were used (except sarcasm dataset) to pre-train 
neural network layers. Then we fine tuned them 
on the train subsets for extract subtask. We used 
Adam method for stochastic optimization of an 
objective function. 

4 Experiment Methodology 

This section describes our experimental setup for 
participation in the SemEval-2017 Task 4 called 
“Sentiment Analysis in Twitter”. Task 4 consists 
of five subtasks, but we only participated in top-
ic-based message polarity quantification – sub-
tasks D, E according to a two-point scale and 
five-point scale, respectively. Its dataset consists 
of Twitter messages (aka observations) divided 
into several topics. These subtasks are evaluated 
independently for different topics, and the final 
result is counted as an average of evaluation 
measure out of all the topics (Rosenthal et al., 
2017). 

For the quantification algorithm described in 
Section 2, we need to build a cost-sensitive clas-
sifier in the function build_clf. 

4.1 Approach 2016 

Last year we tried few cost-sensitive classifiers 
and finally chose a fast logistic regression classi-
fier. 

Since observation x in this dataset is a mes-
sage written in a natural language, we first need 
to transform it to a vector representation X. 
Based on a study by (Gao and Sebastiani, 2015), 
we choose the following components of the fea-
ture vector: 
 TF-IDF for word n-grams with n varies 

from 1 to 4 

 TF-IDF character n-grams where n varies 
from 3 to 5. 

A feature vector is extracted with a 
Scikit_Learn tool3. We also perform data prepro-
cessing. Several text patterns (e.g. links, emoti-

                                                     
                                                      
3http://scikit-
learn.org/stable/modules/generated/sklearn.feature_extractio
n.text.TfidfVectorizer.html 

cons, and numbers) were replaced with their sub-
stitutes. For word n-grams we apply lemmatiza-
tion using WordNetLemmatizer.  

It is interesting to characterize messages using 
the SentiWordNet library. For each token xi in 
document X we obtain its polarity value from the 
SentiWordNet. First, we recognize the part of 
speech using a speech tagger from the NLTK li-
brary (Bird et al., 2009). Second, we get the 
SentiWordNet first polarity value for this token 
using the part of speech information. 

The organizers provide a default split of the 
SemEval2016 data into training, development, 
development-time testing and testing datasets. 
The algorithms evaluation is performed using 
these subsets. The training, development and de-
velopment-time testing subsets are used as a 
TRAIN set. The testing subset is used as a TEST 
set. 

4.2 Approach 2017 

This year we try to apply neural network as a 
cost-sensitive classifier. 

We remove punctuations from input text mes-
sage. Then we split tweets into words and trans-
form them into a sequence of word index with 
fixed length. All preprocessing is performed us-
ing Keras4 library with Tensor Flow backend. 
We do not apply character sequences and lem-
matization or stemming of words. As a TRAIN 
set, we use all datasets provided by organizers of 
topic-based message polarity challenge.  

The chosen parameters of our network are as 
follows: the maximum input sequence length is 
set to 30, vocabulary size is 300000, the dimen-
sionality of word embedding is 300, LSTM units 
hidden state vector size is 64, two LSTM layers 
and dropout of 50% while training. We use the 
dense layer with output dimension equals to one 
for subtask D and five for subtask E with sig-
moid activation. 

The metrics that we use to evaluate the classi-
fier performance are described in (Rosenthal et 
al., 2017) and are not described here. 

5 Experiment Results 

The results of five point scale subtask are shown 
in Table 1. During the development period, we 
compare our system with last year one on the last 
year dataset. New system produced an EMD 

                                                     
                                                      
4https://keras.io 
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measure of 0.347 while last year system was 
slightly better - 0.334. We explain this by the 
fact that dataset for network fine-tuning was rela-
tively small last year. This year training dataset 
is three times bigger, that is why we decide to 
submit results from the new version of the algo-
rithm. 

EMD of our new system on the new dataset is 
0.317 while the best system scored 0.245.  

Settings EMD 

Approach and dataset 2017 0.317 (5) 

Approach 2017, dataset 2016 0.347 

Approach and dataset 2016 0.334 (4) 

Table 1: Results of Task 4E. 
 
The results of two-point scale subtask are shown in 

Table 2. Our algorithm shows KLD equals to 0.078 
while the best system is 0.036. 

Settings KLD  RAE  

Approach and dataset 2017 0.078 (8) 1.528 (8) 

Approach and dataset 2016 0.084 (7) 0.767 (4) 

Table 2: Results of Task 4D. 

6 Conclusion and future work 

The aim of this research was to try to solve sen-
timent quantification task with deep learning ar-
chitecture. We compared our deep learning ap-
proach used this year with an approach without 
deep learning used last year.  

For tweet quantification on a five-point scale 
(Subtask E) and a two-point scale (Subtask D), 
we used the same iterative method proposed by 
(Xue and Weiss, 2009). As a classifier we used 
deep learning network which was retrained on 
the big corpus and fine tune on the small. These 
approaches showed the 5-th and the 8-th best 
places in the competition subtasks E and D re-
spectively. 

In our future work, we are planning to move in 
two directions. First, we plan to apply new deep 
architecture and pre-train it using more data. Se-
cond, we want to explore the bias property of the 
CDE-Iterate quantification method. 
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